Negative $N$ | $::=$ | $P \imp N \celse N \land N \celse \top \celse \forall x . N(x) \celse a^-(t)$ |
Positive $P$ | $::=$ | $\dns N \celse a^+(t)$ |
Terms $t$ | $::=$ | $x \celse \cdots$ |
Propositions $A,B,C$ | $::=$ | $A \imp A \celse A \land A \celse A \lor A \celse \top \celse \bot \celse \forall x . A(x) \celse \exists x . A(x)\celse Ux.A(x)\celse a(t)$ |
$N$ | $N^ t$ | $N^\circ$ |
$P \imp N$ | $P^\ast \land N^t$ | $P^\circ \imp N^\circ$ |
$N_1 \land N_2$ | $N_1^t \lor N_2^t$ | $N_1^\circ \land N_2^\circ$ |
$\top$ | $\bot$ | $\top$ |
$\forall x . N(x)$ | $\exists x . N^t(x)$ | $\forall x . N^\circ(x)$ |
$a^-$ | $a^-(t)$ | $(a^-)^\ast$ |
$P$ | $P^\ast$ | $P^\circ$ |
$\dns N$ | $N^\circ$ | $N^\ast$ |
$a^+$ | $a^+$ | $a^+$ |
$N_1\ldots, N_n\prov a^-$ | $N_1^\ast, \ldots, N_n^\ast, a^-(x) \prov \sh(x)$ |
$N_1\ldots, N_n[N]\prov a^-$ | $N^\ast_1, \ldots, N^\ast_n, a^-(x) \prov N^x$ |
$N_1\ldots, N_n\prov N$ | $N^\ast_1, \ldots, N^\ast_n\prov N^\circ$ |
$N_1\ldots, N_n\prov [P]$ | $N^\ast_1, \ldots, N^\ast_n\prov P^\ast$ |
$P^\ast \preq P^\circ$ |
$N^\ast \preq N^\circ$ |