$
\def\dash{\unicode{8212}}
\def\trov{\triangleright}
\def\ttrov{\triangleright_t}
\def\xtrov{\triangleright_x}
\def\imp{\Rightarrow}
\def\celse{\ |\ }
\def\prov{\vdash}
\def\dns{{\downarrow}}
\def\ups{{\uparrow}}
\def\preq{\dashv\vdash}
\def\sh{\#}
\def\lol{\multimap}
\def\tensor{\otimes}
\def\wat#1{\mathrel{@_{#1}}}
\def\ast#1{\mathrel{*_{#1}}}
\def\bull#1{\mathrel{\bullet_{#1}}}
\def\rle{\sqsubseteq}
$
$P \lol N$ |
$P \wat t \alpha . N \wat t \phi . \kappa(\alpha \lol \phi)$ |
$\exists \alpha. (P \ast t \alpha) \tensor \exists \phi . (N \ast t \phi) \tensor (\alpha \lol \phi \rle f)$ |
$N_1 \land N_2$ |
$N_1 \wat t \kappa \land N_2 \wat t \kappa$ |
$N_1 \ast t f \lor N_2 \ast t f$ |
$\top$ |
$\top$ |
$0$ |
$\Diamond P$ |
$\forall \phi . \star^+(\phi) \imp (\dns \forall x \ge t . P \wat x (\dash \xtrov \phi)) \imp \kappa(\phi)$ |
$ \star^+(f) \tensor \dns \forall x \ge t . P \bull x f$ |
$a^-$ |
$\forall \phi . \dns a^+(\phi, t) \imp \kappa(\phi)$ |
$ a^+(f, t)$ |
$\ups P$ |
$\forall \phi . \dns P \wat t (\dash \ttrov \phi) \imp \kappa(\phi)$ |
$\dns P \bull t f$ |
$P_1 \tensor P_2$ |
$P_1 \wat t \alpha_1 . P_2 \wat t \alpha_2 . k (\alpha_1 * \alpha_2)$
| $\exists \alpha_1. (P_1 \ast t \alpha_1) \tensor \exists \alpha_2 . (P_2 \ast t \alpha_2) \tensor (\alpha_1 * \alpha_2 \rle p)$ |
$P_1 \lor P_2$ |
$P_1 \wat t k \land P_2 \wat t k$ |
$P_1 \ast t p \lor P_2 \ast t p$ |
$1$ |
$k(\epsilon)$ |
$\epsilon \rle p$ |
$0$ |
$\top$ |
$0$ |
$\square N$ |
$\forall \alpha . (\dns \forall x \ge t . N \wat x (\alpha\xtrov \dash)) \imp k(\alpha)$ |
$\dns \forall x \ge t . N \bull x p$ |
$a^+$ |
$\forall \alpha . a^+(\alpha, t) \imp k(\alpha)$ |
$a^+(p, t)$ |
$\dns N$ |
$\forall \alpha . \dns N \wat t (\alpha\ttrov \dash) \imp k(\alpha)$ |
$\dns N \bull t p$ |