
Buyers and Sellers in Affine Logic

Jason Reed

January 23, 2016

1 Introduction

Everyone loves that Peyton-Jones/Eber/Seward paper [PJES00], and indeed to
a PL person it’s lovely: just think real hard, write down the right combinators,
and you have an appropriate language for the dynamics of people offering trans-
fers of resources and choices and obligations and so on. But ever since reading
it I’ve always had a nagging suspicion that you should be able to somehow de-
rive the dynamics of offering transfers of resources and choices and so on from
substructural logics that we already understand well. Then the thinking real
hard and writing down the right combinators might be reduced to ‘that’s just
the way linear logic works’.

What I’m going to do below is not that — I’m not actually going to derive
their combinators from anything, I don’t know how to do that yet. I just took
the idea of ‘buyers and sellers of contracts’ (which is to say, ‘various parties
making bets with one another’) and tried to think about what shape it took in
substructural logics, and I’m just going to disclose what seemed to work, and
where that led me.

2 First Pass at Buyers and Sellers

2.1 Logical Preliminaries

I’m going to assume you already know well what inutitionistic (affine) linear
logic is, and that I don’t need to spell out the language — that’s what I’m going
to be working in, and I’ll just sort of play fast and loose with what exactly is
in the logic. I could have tried doing a classical logic, and in some ways that
might have worked out more nicely, in that the price of two contracts, one that
pays a dollar when proposition A is true, and another that pays a dollar when
A is false, would have been neatly a dollar, by excluded middle. But I prefer
to work in a constructive logic to see exactly “how much excluded middle” I’m
using.

The first thing I’ll need to definitely have in the language is a linear propo-
sition that represents amounts money, and I want it to be arbitrarily divisible.
So I’ll say a hypothesis $(x) sitting in the context represents my posession of x

1

dollars, where x is an arbitrary nonnegative real number. Just assume (without
further discussion of what mechanism enables it to be so) that things like

$(x+ y) a` $(x)⊗ $(y)

$(0) a` 1

hold. Maybe there’s an implicit context full of global rules like

!(∀xy.$(x+ y)($(x)⊗ $(y))

or maybe $ isn’t an atom but rather a defined proposition ginned up specifically
to have those properties — or still something else, whatever. I don’t care.

I’m going to treat the logic as affine (meaning you’re allowed to throw re-
sources away, i.e. you can prove A ` 1 but not necessarily A ` A ⊗ A) so that
provable sequents correspond to (maybe zero) arbitrage opportunities, or more
blandly, to transactions that every party consents to. The interests of counter-
parties other than the ‘me’ that is the prover are represented by populating the
context with various propositions, and my own interest in tolerating increases
but not decreases in money comes exactly from affineness.

2.2 Definitions

If we’re going to have bets — ahem, contracts — about ‘real-world events’,
then we need a connection between (not-linear-resource, unrestricted, persis-
tent) propositions and resources. I’m going to use the unrestricted implication
⇒ for that. Make the abbreviation

[A] := A⇒ $1

To have a proposition [A] in the context means I hold a contract that pays
out a dollar whenever A is true. Just because the proposition A is unrestricted
doesn’t mean A ⇒ $1 is; the contract is itself a linear resource. Its subject A
can be proven true over and over, but you only get as many dollars for its truth
as you have linear copies of the contract in your context..

When someone is willing to sell me a contract that pays out when A is true,
that looks like

S(A, p) := $p([A]

When someone is willing to buy from me a contract that pays out when A is
true, that looks like

B(A, p) := [A]($p

2.3 Consequences

Immediately we can prove some pretty obvious things like profiting off of market-
making

$p,S(A, p),B(A, p+ q) ` $(p+ q)

2

An important thing the logic is keeping track of for us is that we must already
have the $p in order to buy the contract from the seller, before we can resell it
to the buyer.

Another simple provable thing is

S(A, p), !(B ⇒ A) ` S(B, p)

If someone’s willing to sell for $p a ticket that pays when A is true, and we
know that B guarantees A being true, then it’s rational for us to act as a seller
of a B-contract at price $p. Conceivably B might fail to hold while A is true
for some other reason, in which case we would make a profit.

We can also prove some slightly less obvious things like

S(A, p),S(B, q) ` S(A ∨B, p+ q)

If we can buy an A-contract and a B-contract, then we can safely offer a contract
(with a price that covers the cost of materials) that pays out when at least one
of A and B is true — we will never have to pay out except under a circumstance
in which at least one of the contracts we bought pays out.

An interesting special case of this example is when the propositions A and
B are believed to exhaust the space, i.e. when ` A ∨ B. In this case we would
have

S(A, p),S(B, q) ` S(>, p+ q)

For example, when A is something like ‘team A wins the sportsball champi-
onship’ and B is ‘team B wins the sportsball championship’ and no ties are
allowed. If you looked at the betting markets and you saw the sum of the price
of A and the price of B being less than $1, you’d have an arbitrage opportunity,
namely S(>, p+q), which is the market effectively selling you a 100% guaranteed
$1-generating ticket at the price of $(p+ q) < $1.

2.4 Doubts about Time

At this point I notice there’s an interesting and very basic problem-modelling
question, that I’m going to state but defer answering conclusively for now. As-
suming I ‘know’ ` A ∨B, and I use that fact in proving

A ∨B, S(A, p),S(B, q) ` S(>, p+ q)

it feels like it might be cheating to do ∨L on that assumption if which branch of
the disjunction I wind up in affects my decision of what contracts to buy from
sellers. What I really want a sequent proof to correspond to is a proof that
I can make a transaction right now knowing only what I know; so maybe the
A∨B needs to be guarded by some kind of temporal logic modality, that I know
A ∨ B holds at some point in the future. And then perhaps the definition of
[A] would get modified as well, to be something like (3A)⇒ $1 or (©A)⇒ $1
or something like that, depending on what modal logic you’re in. Not sure yet.
This feels related to how disjunctions are funny in type systems for distributed
programming, where doing an elimination naively means that you might need
to ‘psychically’ know the value of the disjunction at a remote host.

3

2.5 Buyer/Seller Duality

Normally with a prediction market (and with a classical-logic mindset) you’d
expect some kind of duality between contracts on a proposition and its negation.
Perhaps something like

B(A, p) a` S(¬A, 1− p)

for any price p ∈ (0, 1). This being because a willingness to buy an A-pays-$1
contract should be the same thing as being willing to buy a A, ¬A bundle for $1,
and then selling off the ¬A half for $(1−p). But this isn’t provable directly with
the definitions above. What is provable is rather interesting. Let’s generalize S
and B to

S(A,X) := X ([A]

B(A,X) := [A](X

In this case we can get away with

(A ∧B ⇒ 0),B(A,X ($1) ` S(B,X)

(A ∨B),S(B,X) ` B(A,X ($1)

Here’s sketches of how the proofs go:

X ($1, X ` $1

A,B ` A ∧B 0 ` $1

A ∧B ⇒ 0, A,B ` $1

A ∧B ⇒ 0, B ` A⇒ $1

A ∧B ⇒ 0, (A⇒ $1)(X ($1, X,B ` $1

A ∧B ⇒ 0, (A⇒ $1)(X ($1 ` X ((B ⇒ $1)

A ∧B ⇒ 0,B(A,X ($1) ` S(B,X)

X ` X A ∨B, (B ⇒ $1), (A⇒ $1) ` $1

A ∨B,X ((B ⇒ $1), (A⇒ $1), X ` $1

A ∨B,X ((B ⇒ $1) ` (A⇒ $1)(X ($1

A ∨B,S(B,X) ` B(A,X ($1)

So if A and B are contradictory and exhaustive, as A and ¬A would be in
classical logic, we have the equivalence of S(B,X) and B(A,X ($1). But
$p ($1 isn’t quite the same thing as $(1 − p). What’s going on there? The
logic is again forcing us to keep track of the fact of how much initial capital we
have to put up in order to exploit arbitrage opportunities.

The proposition $p($1 is an opportunity to profit by $(1 − p), but it’s a
weaker proposition than $(1 − p), precisely because you need to put up $p to
get it going. We have

$(1− p) ` $p($1

4

but not the converse
$p($1 6` $(1− p)

A question I asked myself at this point was, to what extent can we get back
some of the symmetry of the classical situation? Does there exist, perhaps, a
proposition Y (p) parameterized by a price p such that both

$p ` Y (p)

Y (p) a` Y (1− p)($1

It would be a weakening of the propositional meaning of $p; something like ‘you
can make a profit of $p after perhaps some effort or initial capital’, and it would
be such a suitable weakening as to be a fixedpoint under the flip embodied by
the second required axiom above.

Notably one attempt at a definition,

Y (p) := $(1− p)($1

does not work. We get
$p ` $(1− p)($1

and
($p($1)($1 ` $(1− p)($1

is easy to prove, but

$(1− p)($1 6` ($p($1)($1

fails. After doing(R, we can’t proceed without any unconditional $ hypotheses
in the context.

I think it’s possible to solve this puzzle, however, with a corecursively defined
proposition:

Y (p) = να.$p⊕ (($(1− p)⊕ (α($1))($1)

Here $p(Y (p) is easy by left-injecting into the coproduct, and the other two
proof obligations work by coinduction. First we prove a lemma:

D =

$p, $(1− p) ` $1

$p ` $p

$p ` $p⊕ (Y (1− p)($1)

$p, ($p⊕ (Y (1− p)($1))($1 ` $1
⊕L

$p, Y (1− p) ` $1

5

and then we can show

D

$p, Y (1− p) ` $1

[coind. hyp.]

Y (p), Y (1− p) ` $1
⊕R,(R

Y (1− p) ` $(1− p)⊕ (Y (p)($1)
(L

($(1− p)⊕ (Y (p)($1))($1, Y (1− p) ` $1
⊕L

Y (p), Y (1− p) ` $1

Y (p) ` Y (1− p)($1

and in the opposite direction

$(1− p) ` Y (1− p)

Y (1− p)($1, $(1− p) ` $1

[coind. hyp.]

Y (1− p)($1,` Y (p)

Y (1− p)($1, Y (p)($1 ` $1

Y (1− p)($1, $(1− p)⊕ (Y (p)($1) ` $1

Y (1− p)($1 ` ($(1− p)⊕ (Y (p)($1))($1

Y (1− p)($1 ` Y (p)

Having done all that, we can finally say that if ` A∧B ⇒ 0 and ` A∨B, then

B(A, Y (p)) a` S(B, Y (1− p))

3 Definite Problems with Time

This section is a continuation of exploring the worry expressed in 2.4.

3.1 A Thing I Don’t Want to Prove

Let’s generalize the definitions so hard that they become just a trivially different
(albeit suggestive) way of writing implications:

Say [A]p means A ⇒ $p, pronounced “a ticket that pays out p when A is
true”.

Say S(Y,X) = X (Y , pronounced “there is a seller in the market willing
to sell me contract Y at price X”.

Say B(Y,X) = Y (X, pronounced “there is a seller in the market willing
to by contract Y from me at price X”.

In this case, there is a proposition I can prove, but shouldn’t be able to
according to my informal intended interpretation of the semantics. It is

$p,B([A]q, $m),B([B]t, $q),S([A ∧B]t, $p) ` $m

6

The proof is this:

$m ` $m

$q ` $q

$p ` $p

$t ` $t A,B ` A ∧B

A,B, [A ∧B]t ` $t

A,B, $p,S([A ∧B]t, $p) ` $t

A, $p,S([A ∧B]t, $p) ` [B]t

A, $p,B([B]t, $q),S([A ∧B]t, $p) ` $q

$p,B([B]t, $q),S([A ∧B]t, $p) ` [A]q

$p,B([A]q, $m),B([B]t, $q),S([A ∧B]t, $p) ` $m

The proof is a story of the transactions made: we sell a A-pays-q contract to
the first buyer (call her Alice) in the context. This guarantees the revenue $m
that the sequent says we expect to make at the end of the day. Now we need
to show that we can definitely pay out the value of the contract we sold, under
the assumption that A is true. Well, we can sell a B-pays-t ticket to Bob, at
price q. That matches up with the $q we owe alice in case A happens. Now we
must show that we can pay Bob t assuming B happens. Well by now we have
both A and B in the context, so we can buy an A ∧B-pays-t ticket from Carol
with the initial capital $p that we assumed we had, and satisfy our obligation
to Bob.

What’s wrong with this story? It seems like a bad model to assume that a
buyer at a cetain price that exists now will exist forever if we don’t interact with
them. So we actually want to imagine buying/selling all the contracts implicated
in a single proof in the present, prior waiting for the truth of propositions of A
and B to come to light.

So let’s imagine that right now I sell the A-pays-q to Alice for $m, I sell the
B-pays-$t to Bob for $q, and I buy a A ∧ B-pays-$t from Carol for $p. I have
$(m+ q). If A comes true, I pay Alice $q. If B then comes true, Carol pays me
$t and I pass that along to Bob, and I’m left with at least $m in any case. So
everything’s fine, yeah?

Not so fast! What if B is known to be true before A? (or indeed B may
be true and A false; but I’m being a good intuitionist and simply picturing the
scenario where B is known to be true, and A isn’t known to be true yet) In this
case I have $(m+ q) and I owe Bob $t, and Carol doesn’t owe me anything, and
maybe $t is bigger than $(m+ q) and I’m out of luck.

What went wrong here is I’m not being careful enough about the temporal
character of the propositions becoming true and creating payment obligations.
If [A]t was defined as somthing like 3A⇒ $t, then instead of needing to prove
A,B ` A ∧ B, we would have to prove 3A,3B ` 3(A ∧ B), which is indeed
unprovable, as desired! At least for most sensible interpretations of 3 I have in
mind. If A is true in some future world, and B is true in some future world,
then you don’t know it’s the same world they’re true in.

7

3.2 A Thing I Want to Prove

Do we then want a ‘plain old ordinary 3’, like in [PD01], which gives you nothing
particularly useful from 3A∧3B? (At least nothing you couldn’t get from 3A
or 3B alone) Here’s an argument why not.

Note that the bad case above is bad because $t might be bigger than $(m+q).
If I choose all the numbers right so that they work for either ordering of the
component events, then things should be ok.

I do think I should be able to prove, for example,

B([A], $(1− a)),B([B], $(1− b)),S([A ∧B], $(1− a− b)) ` 1

for suitable definitions of all the propositions involved. Here I sell an A-pays-$1
ticket to Alice, a B-pays-$1 ticket to Bob, and buy an A∧B-pays-$1 from Carol,
leaving me with exactly $(1 − a) + $(1 − b) − $(1 − a − b) = $1. If A comes
true, I can pay that $1 to Alice. If B comes true, then to Bob I forward Carol’s
payment of $1. The same story plays out symmetrically if B is true first, and
then A. If neither A or B are ever true, then I’ve made a profit.

So it seems like I’m going to want a modality that actually enables me as a
prover to do case analysis over these orderings. Although — even if I have such
a thing, I suspect [A]t = 3A ⇒ $t may still be too simplistic a definition of
an A-pays-t contract. Even though the above scheme is self-funding, requiring
no initial capital, the proof theory wouldn’t let me apply the (L rule to
B([A], $(1− a)) without throwing away $(1− a) in the $(1− a) ` 1 branch.

3.3 Linear-time Possibility

But I suspect I do in any case want some kind of diamond that lets me prove

3A,3B ` 3((3A ∧B) ∨ (A ∧3B))

which is a standard thing to expect of 3 when the Kripke relation is known to be
a linear order. This behavior, in specifically the context of a constructive logic,
i.e. a type theory, has a rather arrestingly pleasant application to FRP; Paykin
and collaborators [PKZ15] add a variant of the above to their type theory as an
axiom, where it is effectively the type of the unix system call select.

Instead of just throwing it in as an axiom, I have a burning desire to un-
derstand what kind of judgmental machinery could give rise to such a beast —
I’m going to try to code it up out of ‘simpler’ parts, so that, e.g. the fact of its
cut elimination falls out of the cut-well-behavedness of the parts. I say ‘simpler’
because the parts I’m going to build it out of are themselves slightly exotic as
logical connectives go, and which I will treat very handwavily — but I think the
decomposition is still perspicuous and interesting.

My proposal is the following:

3A = ∃x.[x]⊗2(∀y ≥ x.[y]((A ∨ [#y]))

8

The new syntax I need to explain consists of [—] and ≥ and #.1 The
expression [—] is an atomic proposition of the sort you’d expect to find in any
discussion of first-order logic, whose argument is a term expression. Terms are
built from term variables, the binary function symbol ∗, (which hasn’t appeared
yet, but will be required imminently) and the unary function symbol #. There
is a binary relation ≥ on terms.

I’ll demand as axioms that ≤ is reflexive and transitive, and that

[x ∗ y] a` [x]⊗ [y]

x ≤ #x #(x ∗ y) = #x ∗#y

x1 ≤ y1 x2 ≤ y2
x1 ∗ x2 ≤ y1 ∗ y2

and furthermore whenever y ≥ x1 ∗ x2 then there exist y1 ≥ x1 and y2 ≥ x2
such that we can decompose y = y1 ∗ y2.

To see how this definition works, let’s go through the proof of

3A,3B ` 3((3A ∧B) ∨ (A ∧3B))

The first thing we do is unpack the existentials and tensors on the left. From
there we have to prove:

∀y ≥ x1.[y]((A ∨ [#y]) valid,∀y ≥ x2.[y]((B ∨ [#y]) valid

[x1], [x2] ` 3((3A ∧B) ∨ (A ∧3B))

The [x1] and [x2] (together with those big valid assumptions that give them
content) are kind of like A poss and B poss hanging out on the left of the
turnstile. Now we work on the 3 on the right: for the � (which also has a !
baked in, remember?) to succeed, we have to choose something for x in the
existential to gobble up the whole linear context. But choosing x = x1 ∗x2 does
exactly this, since then [x] = [x1 ∗x2] = [x1]⊗ [x2]. So now our proof obligation
is: (refraining from writing down again the valid assumptions, which are still
there)

` ∀y ≥ (x1 ∗ x2).[y](((3A ∧B) ∨ (A ∧3B)) ∨ [#y]

Use the axiom about decomposing y ≥ x1 ∗ x2 to see this is the same as

` ∀y1 ≥ x1.∀y2 ≥ x2.[y1 ∗ y2](((3A ∧B) ∨ (A ∧3B)) ∨ [#(y1 ∗ y2)]

and then let all the asynchronous stuff fire, and turn the crank on the axioms
some more, and we get

[y1], [y2] ` ((3A ∧B) ∨ (A ∧3B)) ∨ ([#y1]⊗ [#y2])

1The 2 is pretty much what you’d expect of 2 in intuitionistic logic, (see [PD01] for what
I expect, anyhow) except take my word for it that it also has ! baked into it; it assumes (on
the left, or requires on the right) that everything is valid not merely true, and valid things are
definitely persistent not linear.

9

Where can we go from here? Focusing on the right probably won’t work. The
left branch of the ∨ is probably a non-starter since any As and Bs in our
hypotheses are still locked up in the valid context. We can’t prove [#y1]⊗ [#y2]
either, since all we have is [#y1]⊗ [#y2]. So let’s try actually pushing the button
on one of the valid assumptions. Use [y1] (since we know y1 ≥ x1) together with
∀y ≥ x1.[y]((A ∨ [#y]) valid to work up to

A, [y2] ` C [#y1], [y2] ` C

A ∨ [#y1], [y2] ` C

[y1], [y2] ` C

(where C = ((3A ∧ B) ∨ (A ∧3B)) ∨ ([#y1] ⊗ [#y2])) This is starting to look
good. In the left branch, we might have a hope of proving A ∧3B, and in the
right branch, we’re not far from proving [#y1]⊗ [#y2]. We do it by sending y2
into ∀y ≥ x2.[y]((B ∨ [#y]) valid:

A, [y2] ` C

[#y1], B ` C

[#y1], [#y2] ` [#y1]⊗ [#y2]

[#y1], [#y2] ` C

[#y1], B ∨ [#y2] ` C

[#y1], [y2] ` C

A ∨ [#y1], [y2] ` C

[y1], [y2] ` C

The informal story going on here is that we have two events, A and B; we
waiting for A and maybe it happened or not. If A didn’t happen yet, we waited
for B and it happened or not. If B didn’t happen either, then we learn that none
of the events we were waiting for happened, and this is a sufficient observation
to terminate the proof.

In the remaining branches, we have some event that definitely did happen,
and all of the remaining events are still waiting to happen. If we can show
A, [y2] ` A ∧3B and B, [#y1] ` 3A ∧ B and we’re done. The apparent asym-
metry between [y2] and [#y1] is smoothed over by the fact that the ∀ in the
definition of 3 is over any y ≥ x; it doesn’t care if there’s a few #s tacked
on: we assumed x ≤ #x for any x, and that ≥ is transitive. So the proof that
[#y1] ` 3A looks like

A ∨ [#y] ` A ∨ [#y]
∗

y ≥ #y1, [y] ` A ∨ [#y]

` 2(∀y ≥ #y1.[y]((A ∨ [#y]))

[#y1] ` [#y1]⊗2(∀y ≥ #y1.[y]((A ∨ [#y]))

[#y1] ` ∃x.[x]⊗2(∀y ≥ x.[y]((A ∨ [#y]))

10

where ∗ is the moment where we apply ∀y ≥ x1.[y] ((A ∨ [#y]) valid. The
proof of [y2] ` 3B is virtually identical, except with one fewer #s in play.

Some parting thoughts on this proposal, as informal as it is:

1. From the point of view of focusing/polarization, it’s a huge beast! Three
phases! Positive, negative, positive. I don’t think I’ve seen that before in
any sensible connective. Is there a way of simplifying it to two somehow?

2. It seems rather more 2-ish than 3-ish. There’s a 2 right in the definition
for heaven’s sake, and it’s not dualized or anything. What’s up with that?
Is there a dual version of it that means ‘for all future times on a linear
timeline’ that seems equally 3-ish, perhaps?

3. It doesn’t satisfy A ` 3A, but you could probably get around that by just
considering A ∨3A.

4. It doesn’t satisfy 33A ` 3A, and I don’t know how to easily fix that.

5. It doesn’t satisfy ` 30, which is good, and that’s exactly what the # is
there for. Take it out and you do get ` 30.

6. It doesn’t satisfy 30 ` 0, which I tend to think is proper. But it seems
kind of fragile, like it’s dangerously almost provable. You can still turn
the crank on the 30 assumption, but all you do is run up one branch of
the proof tree getting [#y] then [##y] then [###y] etc. and you never
have a 3 on the right to connect it up with.

References

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical. Structures in Comp. Sci., 11(4):511–540,
August 2001.

[PJES00] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing
contracts: An adventure in financial engineering (functional pearl).
SIGPLAN Not., 35(9):280–292, September 2000.

[PKZ15] Jennifer Paykin, Neelakantan R Krishnaswami, and Steve Zdancewic.
Linear temporal type theory for event-based reactive programming,
2015.

11

