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Abstract

Logical connectives familiar from the study of hybrid logic can be added to the
logical framework LF, a constructive type theory of dependent functions. This
extension turns out to be an attractively simple one, and maintains all the usual
theoretical and algorithmic properties, for example decidability of type-checking.
Moreover it results in a rich metalanguage for encoding and reasoning about a
range of resource-sensitive substructural logics, analagous to the use of LF as a
metalanguage for more ordinary logics.

This family of applications of the language, contrary perhaps to expectations of
how hybridized systems are typically used, does not require the usual modal con-
nectives box and diamond, nor any internalization of a Kripke accessibility relation.
It does, however, make essential use of distinctively hybrid connectives: universal
quantifiation over worlds, truth of a proposition at a named world, and local binding
of the current world. This supports the claim that the innovations of hybrid logic
have independent value even apart from their traditional relationship to temporal
and alethic modal logics.
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1 Introduction

The notion of hybrid logic has emerged as an intermediate point in the space
between modal logics and the first-order logics in which they can be soundly
embedded. By providing, within the language of propositions itself, ways of
explicitly referring to and manipulating modal worlds, hybridization can re-
cover much of the expressiveness of first-order logic without entirely sacrificing
the simplicity and metatheoretic felicities of a more basic modal language.
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The story of the present piece of work has essentially the same form: by
taking the logical framework LF and judiciously adding hybrid logical connec-
tives, which explicitly name, bind and make use of a certain notion of ‘world,’
we achieve significant gains in expressiveness without making the resulting
language so strong as to cause failure of familiar desirable properties of the
system as a whole. A key difference is that the starting point in our case is
not a modal logic, but rather a logical system that lacks any obvious intrinsic
notion of world 3 . Thus we add such a notion, and furthermore endow it with
an algebraic operation inspired by the semantics for bunched logic given by
Galmiche and Méry [13]. Also worth noting is that the present system is,
as is typical for logical frameworks but not for hybrid logics, a constructive
logic, locating it within a small but growing body of work on intuitionistic
and constructive hybrid logics [18,20,5,6].

The contribution of hybridization in this case is the set of connectives ∀,
@p, ↓, which respectively quantify over variables that stand for worlds, shift
the perspective of a proposition to a new world p, and bind the current world
to a variable. This choice of connectives is sufficient for a surprisingly large
set of applications. Even without adding the typically modal structure of the
connectives �, 3, and an internalization of the Kripke accessibility, we are
able to easily build a system that

• generalizes the linear logical framework LLF [7]

• faithfully encodes the family of ‘usage analysis’ function types →n [32] that
require exactly n uses of their argument.

• faithfully encodes a significant fragment of the logic of Bunched Implications
[22] (the connectives −∗,→,∧,⊤)

• provides a language in which one can state linear metatheorems, thus achiev-
ing an ‘internal’ and simplified version of the system described by McCreight
and Schürmann [19].

This last application, discussed in Section 3.3, was in fact the principal mo-
tivation that led us to design the present system. We did not set out in the
beginning to find out what could be expressed when hybrid connectives were
added to LF; rather, we searched for a system in which linear metatheorems
could be formulated. Hybridization was, in effect, then forced upon us, as we
discovered it to be by far the most natural way of achieving our goal, and
furthermore it also supports the other applications mentioned.

As another argument for the naturalness of the extension, all three hybrid
connectives mentioned are related in a way that arises from considerations of
focused proofs [1] in that they are all right asynchronous. In particular, the
natural deduction introduction rules for each connective are invertible, i.e.

3 If one looks to LLF rather than LF, arguably the former does have some notion of ‘world’
already, inasmuch as it is resource-sensitive at all, but one which is considerably more buried
than in modal logics.



inference from the conclusion of the rule to its premise is also sound. This is
why, for instance, ↓ is taken as a primitive and not the related connective ∃,
which falls outside the right asynchronous fragment. A more thorough history
of the role of ↓ as primitive vs. defined in terms of ∃ in various systems is
given by Blackburn [4].

The remainder of the paper is structured as follows. In section 2 we sketch
the definition of the hybrid logical framework HLF, and discuss substitution,
normalization, and decidability properties of it. Section 3 gives some exam-
ple encodings and applications. Section 4 describes related work, Section 5
outlines future possibilities, and Section 6 provides concluding comments.

2 The Hybrid Logical Framework HLF

2.1 Motivation

Before we begin a more formal treatment of the system, let us briefly consider
some examples from linear logic that give insight into how hybridization arose
naturally out of other concerns.

Linear logic [14] is a logic of resources. It has a context that does not
admit contraction or weakening, and so enforces that every assumption obeys
the resource discipline of being consumed exactly once. For example, the
sequent A ⊸ B, A ⊢ B (where ⊸ is linear implication) is provable, because
the implication A ⊸ B and its argument A get consumed in producing B.
Neither A ⊸ (A ⊸ B), A ⊢ B nor A ⊸ B, A, A ⊢ B are provable, the
former because there are too few copies of A in the context (we cannot use
contraction to duplicate it as we can in the ordinary natural deduction proof
of A ⊃ A ⊃ B, A ⊢ B) and the latter because there is an extra copy of A
(which we cannot use weakening to elide).

Trying to generalize this resource discipline in certain directions (similar
to Wright’s usage analysis [32]) led us to consider existing work on reduc-
ing substructural properties of the context (e.g. contraction, weakening) to
algebraic properties of labels that are attached to deductions, i.e. labelled de-
duction [12]. Such systems constitute an entirely sensible reconsideration of
the meaning of resource use in their own right.

Along these lines one replaces each linear hypothesis with an ordinary
hypothesis, but labelled by a unique identifier that acts as a name for its
role as a consumable resource; instead of the context A ⊸ B, A, A we might
say something like A ⊸ B[α], A[β], A[γ]. Now the two occurrences of A in
the context are distinguished as different resources that can (and must) be
consumed independently. Now conclusions from these hypotheses are also
labelled, by an expression that lists resources that they actually consume. In
this way we could express the failure of the linear sequent A ⊃ A ⊃ B, A ⊢ B
as the failure of the labelled sequent A ⊃ B[α], A[β], A[γ] ⊢ B[α · β · γ]: given
resource α of type A ⊃ B, resources β, γ both of type A, we cannot achieve



B by consuming all three resources α, β, γ.

One simple advantage of this approach is it lets us return to having contexts
that do satisfy weakening and contraction. Adding further copies of, e.g. the
hypothesis A[β] to the context doesn’t harm anything, for it is the labels such
as β that enforce the substructural nature of the logic.

The major advantage, however, and the one that is pertinent to this paper,
is that by exposing the labelled side of substructural logics, we are but a small
distance away from hybridization. We need only consider that these resource
labels are something like modal worlds, and the meaning of the implication
⊸ emerges clearly as a statement in the hybrid language that refers to them:
A ⊸ B is achievable by consuming resources p (‘at world p’) if, for any hypo-
thetical resource named α that has type A, we can produce B by consuming
all the resources p plus the resource α (‘at the local current world combined
with α’). We will see in Section 3 precisely how to phrase this in terms of
∀, ↓, @.

2.2 Definition

Understanding our presentation of HLF obviously benefits from some famil-
iarity with LF, [15,16] the system it is based on, but we provide a little back-
ground here nonetheless. LF is a λ-calculus in the Automath family, which
defines a decidable typing judgment for dependently typed terms. Since de-
pendent types are present, i.e. equality of types depends on equality of terms,
equality on terms (usually defined up to β− and optionally η− conversion) also
must be (and in fact is) decidable. The basic syntax of the language of HLF
includes, as LF does, a notion of terms and type families, and furthermore a
category of expressions that describe worlds:

Worlds p, q, r ::= α | p1 · p2 | ǫ

Terms M ::= λx.M | M N | x | c

Type Families A ::= Πx:A.B | A M | a | ∀α.A | ↓α.A | @pA

Contexts Γ ::= · | Γ, x : A | Γ, α : world

World expressions, recall, are meant to describe resource use. They can
be world variables α, the ‘concatenation’ of two other world expressions, (i.e.
the simultaneous use of two sets of resources) or else the empty resource ǫ,
which as a unit for concatenation makes it a monoid. The language of terms
is in fact identical to that of LF. It includes function expressions, function
application, variables x, and primitive constants c. The notion of type is
where HLF diverges from LF. Familiar from LF are dependent function types
Πx:A.B, application of dependent type families to arguments A M , and prim-
itive constant type families a. What HLF adds is the remaining three type
constructors, ∀, ↓, @p. The contexts Γ in which terms are typechecked are



built up from the empty context by adding hypotheses of term variables x
assumed to be at some type A, and world variables α.

The central typing judgment of HLF is

Γ ⊢ M : A[p]

pronounced as ‘in the context Γ, the term M has type A at world p’. This
differs from LF’s by the addition of the world expression p.

In order to define this judgment, make the following definitions: Let {M/x}
and {p/α} denote (capture-avoiding) substitution of terms for variables and
worlds for world-variables respectively. Let Γ ⊢ A ≡ B : type denote type-
directed definitional equality (as in [16]) and p ≡ACU q denote equality of world
expressions up to Associativity and Commutativity of ·, and Unit laws for ǫ
with respect to ·. Let Σ be a signature of declarations of typed constants.

Then the definition of the judgment Γ ⊢ M : A[p] may be given by a set
of typing rules, as follows:

x : A ∈ Γ
var

Γ ⊢ x : A[ǫ]

c : A ∈ Σ
const

Γ ⊢ c : A[ǫ]

Γ ⊢ A ≡ B : type Γ ⊢ p ≡ACU q Γ ⊢ M : A[p]
tconv

Γ ⊢ M : B[q]

Γ, x : A ⊢ M : B[p]
ΠI

Γ ⊢ λx.M : Πx:A.B[p]

Γ ⊢ M : Πx:A.B[p] Γ ⊢ N : A[ǫ]
ΠE

Γ ⊢ M N : ({N/x}B)[p]

Γ, α : world ⊢ M : B[p]
∀I

Γ ⊢ M : ∀α.B[p]

Γ ⊢ M : ∀α.B[p] Γ ⊢ q : world

∀E

Γ ⊢ M : ({q/α}B)[p]

Γ ⊢ M : ({p/α}B)[p]
↓I

Γ ⊢ M : ↓α.B[p]

Γ ⊢ M : ↓α.B[p]
↓E

Γ ⊢ M : ({p/α}B)[p]

Γ ⊢ M : A[p]
@I

Γ ⊢ M : @pA[q]

Γ ⊢ M : @pA[q]
@E

Γ ⊢ M : A[p]

The auxiliary judgment Γ ⊢ p : world simply establishes that all variables
in p in fact occur in the context Γ. This description of the system is consider-
ably simplified from the full version being developed [27] but it contains most
the essential features. There are standard side conditions on variable occur-
rences in rules: introduction of quantifiers such as Π, ∀ require that the bound
variables they introduce are fresh, etc. We have also omitted the additive
connectives &,⊤.

Since the term language is the same as LF’s, the role of the hybrid connec-
tives is merely to allow description of refinements (that is to say, subsets of
the terms) of existing types. To establish that a term M has the type ∀α.A,
we simply hypothesize a fresh α, and continue checking that M has type A,



which may refer to α. The way that we can use the knowledge that M has
type ∀α.A is by instantiating the universal quantifier with any other valid
world. The binder ↓ operates similarly, except that it fixes the instantiation
to be the whatever the current world is as it is being typechecked. Finally,
the type operator @p ‘transfers’ to the world p, in a manner similar to the
appearance of @ in other hybrid logics.

The type conversion rule tconv usually serves to realize the action of βη-
conversion within types. If two types are convertible, then any term that has
one type has the other; thus they are the same type. Here we also allow ‘world
conversion,’ doing the same thing for the monoid equations on worlds. If a
term is well-typed at one world, it is also well-typed at any ACU-equivalent
world.

We ought also to comment on the use of the ‘empty’ world ǫ in several rules.
In var and const, it means that directly using a variable from the context or
using a constant from the signature does not consume any resources. That
is, the single context of the judgment is a context of unrestricted hypotheses
in the sense of [11]. To express hypotheses that are restricted, e.g. that a
variable of type A is only available via the consumption of a resources p, one
uses the @p type operator, putting in the context a hypothesis x : @pA.

In ΠE, the use of ǫ signifies that Π is still the unrestricted dependent
function type from [11,7]. The arguments of such functions must typecheck at
world ǫ. It is important for our intended encodings that we retain such a type
constructor that corresponds exactly to the Π of the source of the encoding.
It may well be that adding other dependent type constructors to the system
that don’t refer explicitly to ǫ could work, but we have not yet investigated
this possibility.

However, we can already use Π and @p together to express function types
that do use resources. In particular, the primitive implication in Braüner and
de Paiva’s hybridization of intuitionistic logic [5,6] differs from ours (in that it
requires the argument of an implication to be checked at the same world as the
conclusion, rather than at any distinguished world such as our ǫ) but we can
easily encode their A ⊃ B in our language as ↓α.Πx:(@αA).B, or equivalently
(using the standard abbreviation A → B for Πx:A.B when x doesn’t occur in
B) as ↓α.(@αA → B).

2.3 Metatheory

To actually prove all the results that follow, we made use of techniques de-
veloped relatively recently by Watkins et al. [8,9] For space reasons, we do
not give full details here, but refer to [27] for at least a formulation of the
system that makes these proofs much easier than they would be in traditional
form. The general idea of such techniques is to avoid defining first the set of
all the terms of the language (i.e. including those that have β-redices) and
subsequently simply showing (typically by a logical relations argument such



as [16]) that every term has a canonical form that it reduces to.

Instead one defines the language in the first place from the perspective
that what really matters is the set of canonical forms. By giving a syntax
that only admits canonical forms, and by defining substitution in such a way
that it carries out normalization in a hereditary and terminating fashion, the
normalization theorem for all well-typed terms follows as a simple inductive
corollary.

The reason this can be done is that the substitution function is annotated
with the type of the variable being substituted for, and so induction proceeds
principally on the structure of the types, even though during the course of
carrying out reductions the terms involved may become larger.

In this formulation, it is extremely important (and not at all difficult) to
show that substitution is correct vis-a-vis the typing judgment:

Lemma 2.1 (Substitution of Terms) If Γ ⊢ M : A[ǫ] and Γ, x : A, Γ′ ⊢
N : B[q], then

Γ, σΓ′ ⊢ σN : σB[q]

where σ abbreviates the substitution {M/x}.

Lemma 2.2 (Substitution of Worlds) Suppose p is a valid world, i.e. Γ ⊢
p : world.

• If Γ, α : world, Γ′ ⊢ N : B[q], then Γ, σΓ′ ⊢ σN : σB[σq]

• Γ, α : world, Γ′ ⊢ q : world, then Γ, σΓ′ ⊢ σq : world

where σ abbreviates the substitution {p/α}.

Once this is done, a result that is usually somewhat more involved becomes
almost trivial:

Proposition 2.3 (Normalization) Every well-typed term normalizes to a
canonical (β-normal, η-long) form.

The most important remaining issue is the decidability of type-checking.
Although there are several places in the above presentation where this propo-
sition is not clearly true, there is one that is most essential: the rule ∀E. Since
q does not appear anywhere in the term language, it seems we must ‘guess’
from the term and the type in front of us what it is.

In fact, however, we have formulated and partially implemented an algo-
rithm that tracks residual constraints on these unknown worlds, postponing
them as unification variables until such time as they are constrained by type-
checking other parts of the term. This approach is rather standard, and is
much like how type inference typically works in programming languages. In
particular the type conversion rule tconv is the source of unification equations
(up to ACU) on worlds.

In other words, one can reduce type-checking in this system to the problem
of equational unification over associativity, commutativity, and unit laws, well-
known in the literature as ACU-unification, and achieve the following result:



Proposition 2.4 (Decidability of Type-Checking) Given a well-formed con-
text Γ, term M , type A, and world p, it is decidable whether there is a deriva-
tion of Γ ⊢ M : A[p].

In fact, since we have no other function, constant, or relation symbols be-
sides · and ǫ, we require only a fragment of ACU-unification that is easily seen
to be decidable by reduction from the problem of determining solvability of
systems of linear diophantine equations. This means that other algorithms of
great practical importance to the front-end of systems such as Twelf [24] that
depend on unification, such as type reconstruction, are very likely to admit
extensions to be compatible with worlds as well. In general, extending our ap-
proach to other substructural logics requires understanding related equational
unification problems, which have been widely studied.

One might reasonably ask why it is that ∀ doesn’t take an argument and
thereby behave more like a function type. In this case its introduction and
elimination rules might look like

Γ, α : world ⊢ M : B[p]
∀I

Γ ⊢ Λα.M : ∀α.B[p]

Γ ⊢ M : ∀α.B[p] Γ ⊢ q : world
∀E

Γ ⊢ M • q : ({q/α}B)[p]

for new term constructors Λ, • that create and eliminate world-abstracting
functions. This would establish the decidability type-checking problem far
more neatly, since there wouldn’t be important information patently missing
from terms, which we then go to some pains to prove that we can recover.
This is a valid alternative, though we haven’t pursued it very far as of yet.
There don’t seem to be any major difficulties, and indeed it seems to be
more compatible with categorical semantics, but its fatal flaw is that it is not
compatible with the vast majority of applications we care about: if worlds
appear in terms, then the system can distinguish more terms than it could
before. In this proposed alternative, the reason that terms are type-correct is
suddenly more fully manifest in the terms themselves, and so different reasons
amount to different terms, leading to a system that no longer is, for instance,
a proper extension of LLF. It is possible that explicitly quotienting out this
extra information via the idea of proof irrelevance [23] could solve this issue,
but we leave this to future work.

3 Applications

As mentioned, the application that motivated our work was trying to achieve
a clean encoding into a logical framework of the statement of theorems about
substructural logics. Ideally this we would be able to adapt of the body
of metatheoretic algorithms developed for LF[25,28,30] and we would then
be able to formally state and mechanically check in software properties of
substructural logics and languages in a far more natural way. We can presently
do this, but only with much greater effort, in existing software systems such



as Twelf, which are more suited to languages without substructural features.

This goal is not a recent innovation; previous systems such as LLF [7],
RLF [17], and CLF [8,9] are significant milestones in the development of sub-
structural logical frameworks. They are already languages in which one can
write proofs (and, being constructive proofs, these are essentially programs)
but what is missing is a language for stating with sufficient precision what
theorems these proofs actually prove, and tools for checking such claims. We
claim that HLF is such a language, and we plan to develop appropriate tools.

We begin by explaining how HLF is a generalization of the linear logical
framework LLF.

3.1 Embedding LLF

The language of LLF [7] extends LF with features of linear logic. The context
in LLF has unrestricted hypotheses x : A which may be used any number of
times, and linear hypotheses x :̂ A that express resources that must be used
exactly once. The logical connectives taken from linear logic are ⊸, &,⊤.

The connectives &,⊤ can be mapped directly onto the connectives of the
same name in HLF, which we have not discussed, because they are of little
relevance to the hybridization of the system. What is interesting from that
perspective is the connective ⊸. Make the following definition. If A is a type
of LLF, then A∗ is A with every subexpression B ⊸ C of it replaced by

↓α.∀β.((@βB) → (@α·βC))

(where again A → B is an abbreviation for Πx:A.B, and where α, β are fresh
variables) This ‘macro expansion’ of B ⊸ C decomposes it as meaning: let
the current resources be called α. For any extra resources β, if we can produce
B with β, then we can produce C with α and β together.

With this encoding we obtain the result that the logical framework LLF
embeds faithfully as a subsystem of HLF:

Proposition 3.1 The closed LLF terms well-typed at any LLF type A are in
bijective correspondence to the closed HLF terms at type A∗, at world ǫ.

In fact this bijection is only a bureacratic detail away from being an iden-
tity. If we start with a variant of LLF that does not syntactically distinguish
unrestricted function expressions from linear function expressions, then we
would obtain the stronger result

Proposition 3.2 Let A be an LLF type, and Γ an LLF context. The system
LLF derives Γ ⊢ M : A if and only if the system HLF derives Γ∗ ⊢ M : A∗[αΓ],

where the operation Γ∗ on contexts is defined by

(Γ, x : A)∗ = Γ∗, x : A∗

(Γ, x :̂ A)∗ = Γ∗, αx : world, x : @αx
(A∗) (αx fresh)



and where αΓ is a ·-delimited list of αx for each x :̂ B ∈ Γ.

3.2 Usage Analysis Types

A generalization of the previous encoding that is also easy to achieve in this
language is the idea of the function type →n, which requires its argument to
be used exactly n times. For it we simply make the definition

βn ≡

n times
︷ ︸︸ ︷

β · · · · · β

and then define →n as a macro for

A →n B ≡ ↓α.∀β.((@βA) → (@α·βnB))

3.3 Metatheory for the Linear Logical Framework

A common use for LF and its implementation Twelf is to encode logics and
proofs of properties about them by writing recursive functions in relational
style that transform derivations of the logic being studied. For example, a cut
elimination proof for intuitionistic logic can be stated by making the declara-
tion of a type family (i.e. a three-place relation)

cut-admissibility : ΠA : o.ΠB : o.

conc A → (hyp A → conc B) → conc B → type

This declaration together with mode declarations to the effect that there are
supposed to be input derivations of conc A and (hyp A → conc B) and an
output of conc B constitute the specification for a program, which if written,
is a constructive proof of

Fact 3.3 (Cut Admissibility) If Γ ⊢ A and Γ, A ⊢ B, then Γ ⊢ B.

for ordinary propositional logic. Now the linear cut admissibility theorem
behaves differently:

Fact 3.4 (Linear Cut Admissibility) If Γ ⊢ A and ∆, A ⊢ B, then Γ, ∆ ⊢
B.

It involves contexts that must be combined as lists of resources, and so if
we cannot write specifications that take this into account, we cannot state
as powerful theorems as we would like. We can only state weaker theorems
whose proofs might mismanage the context and still pass muster according to
the formal checker.

One can (and we did for a long time!) try to mix linearity and dependency
to leverage linear connectives to express relationships between contexts in such
a theorem, saying something like

cut-admissibility : ΠA : o.ΠB : o.



((conc A ⊗ (hyp A ⊸ conc B)) & conc B) ⊸ type

However, we were never able to make this into a completely satisfactory
system. What does work elegantly is the language of hybrid connectives, as
follows:

cut-admissibility : ΠA : o.ΠB : o.∀α.∀β.

@α(conc A) → @β(hyp A ⊸ conc B) → @α·β(conc B) → type

Here we are able to refer explicitly to worlds that stand in place of contexts
in the statement of the theorem we wish to verify. In this way the formal
theorem plainly resembles the informal version, thus giving us even greater
confidence that the formalization is correct.

3.4 Embedding Bunched Logic

One can also embed several connectives from the logic of bunched implications
[22] in much the same way as the linear embedding. Here we merely need to
say that bunched ∧ maps onto HLF &, bunched ⊤ maps onto HLF ⊤, and
the bunched multiplicative and additive arrow −∗,→ are translated by macro
expansion as follows:

A −∗B ≡ ↓α.∀β.((@βA) → (@α·βB))

A → B ≡ ↓α.((@αA) → B)

Note that the encoding of −∗ is precisely the same as that of ⊸, and that
the encoding of the bunched additive arrow is the same as Braüner-de Paiva
implication mentioned in Section 2.2.

4 Related Work

It has long been recognized that there is an enormous potential gain in ex-
pressivity of a logic that comes with the ability to explicitly refer to some sort
of world that parametrizes the judgment of truth of propositions, whether
conceived modally as possible worlds in hybrid logic [2,4], or thought of as ab-
stract labels in labelled deduction [12,31,26], or concretely in recent research
into mobile programs as hosts on a network network hosts [20,18,21].

The important immediate predecessors to our work within the arena of hy-
brid logics are the constructive systems of hybrid logic independently devised
by Braüner and de Paiva [5,6] Jia and Walker [18] and Chadha et al. [10]
Our contributions relative to these consist of adapting the connectives to a
dependently typed system, and to a notion of world that supports a monoidal
structure (this notion of world by itself, is of course not original to the present
work, see for instance the work of Galmiche and Méry [13]).

On the logical frameworks side, McCreight and Schürmann developed a
metalogic L+

ω [19] for LLF, parallel to the metalogic M+
ω for LF that is the



subject of Schürmann’s thesis [29]. The logic L+
ω , broadly speaking, is a so-

lution to the same metatheoretic encoding problem that we aimed to solve,
but to define L+

ω it is necessary to quantify over variables that stand for linear
contexts, which leads to significant complications and concerns about predica-
tivity. Our solution avoids these by replacing quantification over contexts with
quantification over worlds, which are simpler and more manageable, since they
abstract away just those features that are essential for describing how contexts
are manipulated. Moreover our system permits encodings of metatheorems
and proofs in HLF itself, a noteworthy practical advantage already enjoyed
by standard practices embedding metatheorems and proofs in LF.

The idea of more intimately blending resource use with dependent types,
which in principle could also provide a non-hybrid answer to our problem,
appears in the system RLF developed by Ishtiaq and Pym [17]. What they
call ‘linearity’ in that work, however, is not the idea of resources that must be
used exactly once, but rather at least once, i.e. a logic of relevant implication.
We conjecture that their approach, which apparently fundamentally allows
‘linear’ variables to appear both in a term and its type, cannot be extended
to accomodate linearity in the exactly-one-use sense.

5 Future Work

Our highest priority is to understand how to use this system to fully solve
the problem that motivated its development in the first place: the problem of
encoding and mechanically checking proofs about encodings of substructural
logics in logical frameworks such as LLF. This problem has received copious
attention in the case of more ordinary encodings into LF.

For us it remains to adapt several pieces of the metatheory of LF, and the
theory of logic programs encoded in it. First of all, the operational semantics
for logic programming over HLF needs to be understood, but this is likely to
be relatively simple, since it is likely we can treat worlds much like terms ‘of
type world’ and ∀ much like Π. We will need to extend specifications of input-
output behavior (called mode specifications [28]) to apply to quantified world
variables, and determine whether existing conservative termination checking
algorithms [25] still apply. We expect most of the difficulty to arise in un-
derstanding the right way to adapt coverage checking [30], which is critical in
the mechanization of proofs represented as programs that compute (generally
partial) functions. A function that works by case analysis must cover all cases
to be total, and it must be a total function to represent a correct proof.

Although in this paper we specifically did not focus on modal logics that
feature an accessibility relation, there is no reason yet apparent why it should
not be compatible with the given system. The main issue there the decidabil-
ity of unification in the theory of worlds, concatenation, and an accessibility
relation between worlds with some fixed axioms on it, for the decidability of
type-checking hinges on this problem.



We would like to exhibit a categorical semantics and prove soundness and
completeness with respect to the current system. Progress in this direction
consists of the observation that the addition of the hybrid features described
above to a dependent type system appears to be well modelled by taking a
locally cartesian closed category (well-known to canonically model dependent
types) and adding a monoid object. However, the behavior of the universal
quantifier over worlds does not quite match up with its natural interpretation
as a dependent function type whose domain is the carrier type of the monoid
object, i.e. the type of worlds. The reason for this is that the system given
syntactically treats worlds in a proof irrelevant fashion [23], so we may need
to use the techniques developed by Awodey and Bauer [3] to express this
categorically.

Finally, another important direction to pursue is trying to recover those
connectives that are not right asynchronous: ∨,⊥ in ordinary logic, ⊗, 1,⊕, ! in
linear logic, and ∗, 1m in bunched logic. The central obstacle these pose to the
usual methodologies of logical frameworks, namely the presence of commuting
conversions, has already been addressed in CLF, [8,9] so we expect a solution
along similar lines to be possible. Given the semantic analysis [13] of the
bunched ‘fuse’ connective ∗, this may in any event also require treating some
form of accessibility relation.

6 Conclusion

We have shown how to extend LF by a notion of world, and logical connectives
that explicitly manage worlds, yielding a hybrid logical framework HLF. Al-
though these worlds are different from the ‘worlds’ in modal logics of time and
necessity, they react just as well to hybridization, in that the resulting system
is very expressive. It already subsumes one other well-known extension to LF,
and promises to generalize others. We conclude that hybric logic is useful to
the study of substructural logics, just as it has been fruitful in augmenting
the study of traditional modal logics.
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