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Abstract

The modalities � and© of necessary and lax truth described by Pfen-
ning and Davies can be seen to arise from the same pair of adjoint logical
operators F and U , which pass in both directions between two judgments
of differing strength. This may be generalized to a logic with many such
adjunctions, across judgments subject to different substructral disciplines,
allowing explanation of possibility 3, linear logic’s modality !, and intu-
itionistic labelled deduction as well.

1 Introduction

Insidious rumors may have reached your ears to the effect of

• In judgmental modal S4 [PD01] according to Pfenning and Davies, the
validity judgment itself is right-asynchronous and left-synchronous

• In linear logic [Gir87], the modality ! is made of two mysterious ‘half-
connectives’

• The point of judgments [ML96] is to allow the same proposition to be
judged in different ways

The goal of this note is to clear up the confusion: Judgments are not left- or
right-asynchronous or -synchronous or anything else of the sort. !,�,© are each
constituted from two perfectly ordinary and well-behaved logical connectives —
given a certain generosity of interpretation, the same two.

Moreover, there is no particular need when simply defining a modal logic to
have many different judgments upon exactly the same underlying logical data.
Nothing prevents us from doing so — nothing ever prevents us from defining
whatever predicates we like after the fact — but the typical judgments that
encode modes of truth may fruitfully be arranged so that different modes of
truth are to be predicated on entirely different classes of propositions. In short,
it is helpful to live in a world where the sort of thing that is eligible to be true
is different from the sort of thing that is eligible to be, for instance, necessarily
true. In a slogan:

Different judgments judge different things.
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But don’t worry: there is still a circumstance that allows us to not lose
the expressive power we thought we had a moment ago, when one and the
same proposition could be proven or supposed true, necessary, possible, lax,
constructible from the current set of resources, true at time t, true according to
agent K, and so forth: it is the ubiquity of unary logical connectives that act
as coercions between different judgments, i.e. different notions of truth. Indeed
in everyday life we depend on some kind of transport between the propositions
we utter and those uttered by our neighbors to bring them into correspondence,
but, as the category theorists admonish us, we should not confuse identity with
isomorphism.

And of course we should not necessarily expect every round-trip around these
propositional transportations to be the identity. It becomes evident in fact that
the most common and familiar modal operations are precisely the ‘failure of
holonomy’ of certain paths among modes of truth.

2 Language

The logical language described below, call it ‘adjoint logic’, is parametrized by a
set M of modes of truth, together with a preorder (reflexive, transitive relation)
≤ on M . For typical elements of M we use the letters p, q, r.

For each p ∈ M , there is a notion of proposition-at-p. Its syntax is as follows

Ap ::= Fq≥pAq | Uq≤pAq | Ap ∧p Ap | Ap ∨p Ap | Ap ⇒p Ap | >p | ⊥p | ap

The subscript p on the familiar logical connectives indicates that formally we
are keeping track of where (i.e at which mode of truth) the conjunction, disjunc-
tion, implication is taking place. Likewise there is a separate class of atomic
propositions ap for each p. The notation Fq≥p and Uq≤p is meant to convey that
if q ≥ p in the preorder structure supposed on M , then Fq≥p is in fact allowed to
be used as a logical connective, and similarly for U with the inequality running
the opposite direction.

We are careful not to indulge in the Martin-Löfian absurdity of saying

` Aq propq ` q ≥ p

` Fq≥pAq propp

as if this defined the syntax of propostions via inference rules on the same
putative footing as those that tell us how to prove Fq≥pAq, despite the absence of
anything telling us where the subject Fq≥pAq of the allegedly one-place judgment
propp (‘is a proposition-at-p’) comes from in the first place.

Instead, if forced to used inference rules, we would much better say

` propq ` q ≥ p
F

` propp

reserving F for simply the name of the inference rule itself, and taking propp

instead as a zero-place predicate ‘there is a proposition-at-p’. The constructive
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reading of ‘if there is a proposition at q, and q ≥ p, then there is a proposition
at p’ gives us precsisely what we want — the set of propositions is precisely the
set of proofs that the set of propositions is inhabited.

3 Proofs

We now give a sequent calculus for adjoint logic and observe that it is internally
sound and complete.

A context Γ is something of the grammar

Γ ::= · | Γ, Ap truep

For the time being we will ignore substructural logics and suppose that all
hypotheses are subject to weakening and contraction as in ordinary intuitionistic
logic. Linear and other substructural logics are taken up in Section 4.4.

A sequent, the sort of thing amenable to being provable, is something of the
form

Γ ` Ap truep

subject to the restriction that for every Aq trueq ∈ Γ, we have q ≥ p. Lest this
requirement pass too quickly by the reader’s eyes, it should be noted that it is
the central mechanism by which modalities have any force in the logic. If ≤ is
viewed as ordering modes of truth by strength, we are positing that it does not
make sense to think about a entailing a proposition under a certain mode of
truth if it is subject to any hypotheses of a weaker mode of truth.

The rules of the sequent calculus are as follows, omitting the judgmental
scaffolding truep and the subscript p on connectives when the choice of p is
obvious from context. They include the familiar hypothesis rule and left and
right rules for all the standard connectives:

hyp
Γ, ap ` ap

Γ ` Ap Γ ` Bp

∧R
Γ ` Ap ∧Bp

Γ, Ap, Bp ` Cr

∧L
Γ, Ap ∧Bp ` Cr

Γ ` Ap

∨R1
Γ ` Ap ∨Bp

Γ ` Bp

∨R2
Γ ` Ap ∨Bp

Γ, Ap ` Cr Γ, Bp ` Cr

∨L
Γ, Ap ∨Bp ` Cr

Γ, Ap ` Bp

⇒ R
Γ ` Ap ⇒ Bp

Γ ` Ap Γ, Bp ` Cr

⇒ L
Γ, Ap ⇒ Bp ` Cr

⊥L
Γ,⊥p ` Cr

>R
Γ ` >p

as well as rules for F and U :

Γ ` Aq

UR
Γ ` Uq≤pAq

q ≥ r Γ, Aq ` Cr

UL
Γ, Uq≤pAq ` Cr

Γ�≥q ` Aq

FR
Γ ` Fq≥pAq

Γ, Aq ` Cr

FL
Γ, Fq≥pAq ` Cr

where Γ�≥q means the context made of only those Ap truep found in Γ such that
p ≥ q.

We then have
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Lemma 3.1 (Cut Admissibility) For any Γ, p, r such that p ≤ r and every
trueq in Γ has q ≤ p, if Γ ` Ap and Γ, Ap ` Cr, then Γ ` Cr.

Proof By induction on Ap and the relevant derivations, using standard struc-
tural cut elimination techniques [Pfe95, Pfe00]

and

Lemma 3.2 (Identity) For any Ap, we have Ap ` Ap

Proof By induction on Ap.

Some comments are due about the behavior of this system with respect to
Andreoli-style focusing [And92]: U is a negative connective, left-synchronous
and right-asynchronous, and F is conversely positive, i.e. left-asynchronous
and right-synchronous. Without proving that focusing discipline is correct for
the entire system, a task for another paper, we can at least observe that U is
invertible on the right precisely because it moves ‘with the grain’ with respect to
the central invariant on sequents that their right sides are ≤-smaller than their
left, for U as it is stripped away only transports the right side of the sequent
to a mode of truth that is even smaller by ≤ than it already was, which by the
assumed transitivity of ≤ guarantees the invariant is still satisfied. We find F
is invertible on the left for exactly the same reason.

4 Representations

In this section we discuss how various logics and logical features can be construed
as special cases of adjoint logic.

4.1 Pfenning-Davies �

Pfenning and Davies [PD01] describe an intuitionistic alethic modal logic which,
if rendered classical by the addition of suitable axioms, is equivalent to the
familiar classical modal logic S4.

The entailment relation has the form

∆; Γ `PD A

where ∆ is something of the form A1 valid, . . . , An valid, and Γ of the form
A1 true, . . . An true.

The important rules natural deduction for our purposes are introduction and
elimination for �, and the use of valid hypotheses:

∆; Γ `PD �A ∆, A valid; Γ `PD C

∆; Γ `PD C

∆; · `PD A

∆; Γ `PD �A ∆, A valid; Γ `PD A
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This logic corresponds to a simple subset of adjoint logic for M being the pre-
order with two points, call them t and v, in which t ≤ v and not v ≤ t. The
subset we need contains the traditional connectives (as well as F ) only at t, and
the only connective at all at the mode v is U . Formally, we are only considering

Av ::= Ut≤vAt

At ::= Fv≥tAv | At ∧t At | At ∨t At | At ⇒t At | >t | ⊥t | at

Note that there is only one pertinent F and one U in this system so we can
refer to them as simply F and U . Let the translation A∗ of a PD proposition A
be A with every � replaced by FU and every other connective replaced by the
appropriate t-subscripted analogue.

We then have (lifting operations such as —∗ and U to contexts in the evident
way)

Theorem 4.1

• ∆; · `PD A iff U∆∗ ` UA∗ truev

• ∆; Γ `PD A iff U∆∗,Γ∗ ` A∗ truet

Proof By induction on the relevant derivations, taking advantage of the fact
that U is invertible on the right, the substitution principle for the natural de-
duction system, and identity and cut admissibility for the sequent calculus.

The correspondence between A valid in the PD system and UA∗ in adjoint
logic reveals that the vague notion that valid was somehow ‘intrinsically negative
as a judgment’ (and therefore compatible with left focus, and appearing only
transiently on the right by dint of being asynchronous there) is really an epiphe-
nomenon of it systematically concealing a perfectly ordinary negative connective
U .

We might as well have begun by defining a ‘native’ sequent calculus for PD
modal logic, perhaps by the rules

∆; Γ, A true `PD C

∆, A valid; Γ `PD C

∆; · `PD A

∆; Γ `PD �A

∆, A valid; Γ `PD C

∆; Γ,�A `PD C

in which case we can see that the process of decomposing a � on either side of
the turnstile is isomorphic to that of decomposing FU . On the left, consider

∆, A valid; Γ ` C

∆; Γ,�A true ` C
⇐⇒

Γ, UA∗ truev ` C∗

Γ, FUA∗ truet ` C∗

and furthermore the erstwhile structural ‘copy’ rule becomes simply the left rule
for U .

∆; Γ, A true ` C

∆, A valid; Γ ` C
⇐⇒

Γ, A∗ truet ` C∗

Γ, UA∗ truev ` C∗
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Meanwhile on the right we see the correspondence

∆; · ` A true

∆; Γ ` �A true
⇐⇒

Γ�≥v ` C∗ truet

Γ�≥v ` UC∗ truev

Γ ` FUC∗ truet

where the forced sequencing on the right is justified by essentially focusing
reasoning since U is right-asynchronous — once we decompose the F there is
no reason not to continue decomposing the U .

4.2 Pfenning-Davies ©
The Pfenning-Davies account of lax logic (also found in [PD01]) is concerned
with a different modality ©, defined by allowing the entailment to be one of
the two forms

Γ `PD A true Γ `PD A lax

for Γ consisting only of hypotheses of the form A true, and giving the rules

Γ ` ©A Γ, A `PD C lax

Γ `PD C lax

Γ `PD A lax

Γ `PD ©A true

Γ `PD A true

Γ `PD A lax

Somewhat remarkably, the subset required for encoding © is the same as
that for � but upside-down. We again take the two-point preorder, this time
calling the two points ` ≤ t (though it should be noted that the names do not
actually matter!) and inhabiting only the mode t with most of the connectives:

At ::= U`≤tA` | At ∧t At | At ∨t At | At ⇒t At | >t | ⊥t | at

A` ::= Ft≥`At

The translation in this case requires that A∗ replaces every occurrence of ©
with UF , and every other connective with its t-subscripted twin. The theorem
that realizes the encoding’s adequacy is

Theorem 4.2

• Γ `PD A true iff Γ∗ ` A∗

• Γ `PD A lax iff Γ∗ ` FA∗

• Γ, A `PD C lax iff Γ∗, FA∗ ` FC∗

Proof By induction on the relevant derivations, taking advantage of the fact
that F is invertible on the left, the substitution principle for the natural deduc-
tion system, and identity and cut admissibility for the sequent calculus.

Here we find that the ‘structural’ rule that allows us to infer A true from m
A lax is none other than the right rule for the connective F .
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It is perspicuous again to consider the ‘native’ sequent calculus rules for the
PD lax modality, namely

Γ, A `PD C lax

Γ,©A `PD C lax

Γ `PD A lax

Γ `PD ©A true

Γ `PD A true

Γ `PD A lax

and identify the relationships

Γ, A `PD C lax

Γ,©A `PD C lax
⇐⇒

Γ∗, A∗ ` FC∗

Γ∗, FA∗ ` FC∗

Γ∗, UFA∗ ` FC∗

Γ `PD A lax

Γ `PD ©A true
⇐⇒

Γ∗ ` FA∗

Γ∗ ` UFA∗

Γ `PD A true

Γ `PD A lax
⇐⇒

Γ∗ ` A∗

Γ∗ ` FA∗

between partial derivations in PD and its encoding.

4.3 Multimodal Logics

A multimodal logic with many �s of differing strengths corresponds simply to
having a large preorder for M , and assigning basic ‘ordinary truth’ to its least
element (at which all ordinary connectives are defined), and each � a round-
trip of the form FU up to some high strength mode of truth, and back down to
‘ordinary truth’.

However adjoint logic does not require this stereotypical setup where there
is a single distinguished mode of truth that is ‘basic’ but rather allows all con-
nectives to be defined at every mode, and implicitly allows a different � and
different© for every ‘round trip through a higher mode’ and ‘round trip through
a lower mode’ respectively.

4.4 Linear Logic with !

We may extend adjoint logic with substructural features by allowing a specifi-
cation for each mode of truth of which structural rules it is required to satisfy,
so long as if p ≤ q, we have that any structural rule satisfied by p is also sat-
isfied by q. This is so that, for instance, Fq≥p remains correctly left-invertible.
Otherwise, it might be that one would like to apply structural rules at mode p
before (in a bottom-up reading) moving via F to mode q where those structural
rules are no longer available, meaning that proof search incorporating eager
decomposition of F would not be complete.

To accomodate substructrual properties we must slightly generalize the right
rule for F to be the following

Γ Γ≥q Γ≥q ` Aq
FR

Γ ` Fq≥pAq
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where Γ  Γ≥q means that Γ can be converted to Γ≥q via allowed structural
rules, and in fact Γ≥q is a context containing only judgments truep where p ≥ q.
In this way we allow, for instance, weakening of hypotheses at modes that were
marked as allowing weakening, but we cannot apply the F right rule at all until
all unweakenable hypotheses have been eliminated.

Having done this we can now encode linear logic with !, which winds up
unsurprisingly being very similar to PD �. The subset of adjoint logic required
is again a two-point M with r ≤ u, (for resources and unrestricted hypotheses)
where at now we say that at u we allow weakening and contraction, and at r
we do not. The connectives used are

Au ::= Ur≤uAr

Ar ::= Fu≥rAu | Ar&rAr | Ar ⊕r Ar | Ar ⊗r Ar | Ar (r Ar |
>r | 0r | 1r | ar

where the linear connectives in adjoint logic have the evident rules identical to
those from linear logic except generalized to adjoint logic contexts and conclu-
sions.

To embed linear logic with entailments ∆; Γ `LL A where ∆ is full of un-
restricted assumptions and Γ linear resources, we say that A∗ replaces every !
in A with FU and again subscripts every other connective appropriately, and
check

Theorem 4.3

• ∆; · `LL A iff U∆∗ ` UA∗ trueu

• ∆; Γ `LL A iff U∆∗,Γ∗ ` A∗ truer

One distinct advantage of treating linear logic in this way is that we are able
to smoothly incorporate the connectives of nonlinear intuitionistic logic in the
same system. They may simply be added as connectives native to the mode of
truth u, leaving us with the following adjoint logic

Au ::= Ur≤uAr | Au ∧u Au | Au ∨u Au | Au ⇒u Au | >u | ⊥u | au

Ar ::= Fu≥rAu | Ar&rAr | Ar ⊕r Ar | Ar ⊗r Ar | Ar (r Ar |
>r | 0r | 1r | ar

In it we can conveniently see directly by construction of small prooftrees that,
for instance, F commutes with positive connectives and U with negative con-
nectives:

FA⊗ FB a` F (A ∧B) UA ∧ UB a` U(A&B)
FA⊕ FB a` F (A ∨B) A ⇒ UB a` U(FA( B)

1 a` F> >u a` U>r

0 a` F⊥

We can then derive more familiar identities involving ! such as !A⊗!B a`!(A&B)
because FUA⊗ FUA a` F (UA ∧ UB) a` FU(A&B). Seeing how ! separated
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into positive F and negative U , we can see this arises directly from the am-
bipolarity of ∧ in nonlinear intuitionistic logic. In the same way, we are also
able to see more clearly why ©(A ∧B) a` ©A ∧©B in lax logic, but not, for
instance, ©(A∨B) a` ©A∨©B or ©A ⇒©B ` ©(©A ⇒ B), even though
F (A ∨t B) a` FA ∨` FB and U(FA ⇒` B) a` (A ⇒t UB) if we bother to
include ‘natively lax’ connectives ⇒` and ∨`.

4.5 Pfenning-Davies 3

Deepak Garg noted (personal communication) that lax logic can also be encoded
in linear logic via the definition ©A = (A( a)( a for a a fresh atom. We can
represent 3 similarly as a ‘parameteric De Morgan dual of �’ (see also [CCP03]
for other examples of parametric translations in linear logic) interposing a PD �
between the two ‘negations’ —( a and making the definition 3A = (�(A(
a))( a. Subsequently we may reuse our interpretation above of � as FU .

To achieve this, however, we need a notion of hypotheses that are at once
linear, to maintain the intuitionistic character of the logic1, and somehow ‘more
valid’ than ordinary linear hypotheses, to achieve the context-clearing effect of
the PD elimination rule for 3. We cannot use the notion of validity already
in the logic, since it is not linear, but fortunately the generality of the adjoint
logic easily permits introducing a mode of truth ‘more valid than’ another, and
requiring that it behaves linearly.

First let us recall the PD natural deduction calculus for 3. There are valid
contexts ∆ and true contexts Γ, and two entailments,

∆; Γ `PD A true ∆; Γ `PD A poss

and rules governing poss and 3

∆; Γ ` 3A ∆; A `PD C poss

∆; Γ `PD C poss

∆; Γ `PD A poss

∆; Γ `PD 3A true

∆; Γ `PD A true

∆; Γ `PD A poss

Note that Γ is erased in the second premise of the elimination rule. In sequent
form this erasure appears in the left rule as

∆; A `PD C poss

∆; Γ,3A `PD C poss

To encode this logic we take adjoint logic with M a four-point2 preorder
{r, s, u, v}, with r ≤ {u, s} ≤ v, and allow contraction and weakening only at v
and u. The connectives we need are

Av ::= Uu≤vAu

Au ::= Fv≥uAv | Ur≤uAr | Au ∧u Au | · · ·
As ::= Ur≤sAr

Ar ::= Fu≥rAu | Fs≥rAs | Ar ( Ar | ar

1Otherwise ‘possibility continuations’ in the context would overstay their welcome.
2And in fact diamond-shaped!
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and subsequently the definition of the modalities are given by giving clauses for
translation

(3A)∗ = Ur≤u((Fs≥rUr≤s(Fu≥rA
∗( ar))( ar)

(�A)∗ = Fv≥uUu≤vA∗

We can see that 3 still consists of only two focusing monopoles, one that begins
negative on the outside, switches to positive without interruption through the
outer(, which is interrupted between Fs≥r and Ur≤s, and then begins another
negative stretch which continues through the other ( and switches smoothly
to positive. In other words, we could have said

(31A)∗ = Ur≤u(Fs≥rA
∗( ar)

(32A)∗ = Ur≤s(Fu≥rA
∗( ar)

and then (3A)∗ = (3132A)∗.
The correspondence between sequent derivations before and after translation

obeys

∆; Γ ` A true ⇐⇒ Uu≤v∆∗,Γ∗ ` A∗ trueu

∆; Γ ` A poss ⇐⇒ Uu≤v∆∗,Γ∗, (32A)∗ trues ` ar truer

and we can see the correspondence of partial derivations

∆; A `PD C poss

∆; Γ,3A `PD C poss
⇐⇒

Uu≤v∆∗, A∗ trueu, (32C)∗ ` ar

Uu≤v∆∗, (32C)∗, Fu≥rA
∗ truer ` ar

Uu≤v∆∗, (32C)∗ ` Fu≥rA
∗( ar truer

Uu≤v∆∗, (32C)∗ ` (32A)∗ trues

· · · ` Fs≥r(32A)∗ truer ar ` ar

· · · , Fs≥r(32A)∗( ar truer ` ar

Uu≤v∆∗,Γ∗, (3A)∗, (32C)∗ ` ar

∆; Γ `PD A poss

∆; Γ `PD 3A true
⇐⇒

Uu≤v∆∗,Γ∗, (32A)∗ trues ` ar truer

Uu≤v∆∗,Γ∗, Fs≥r(32A)∗ truer ` ar truer

Uu≤v∆∗,Γ∗ ` Fs≥r(32A)∗( ar truer

Uu≤v∆∗,Γ∗ ` (3132A)∗ trueu

∆; Γ `PD A true

∆; Γ `PD A poss
⇐⇒

Uu≤v∆∗,Γ∗ ` A∗ trueu

Uu≤v∆∗,Γ∗ ` Fu≥rA
∗ truer ar ` ar

Uu≤v∆∗,Γ∗, Fu≥rA
∗( ar truer ` ar

Uu≤v∆∗,Γ∗, (32A)∗ trues ` ar truer
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Requiring the sequencing of translated derivations to take place as depicted
requires focusing reasoning beyond the scope of this note. It’s possible the
reasoning could be simplified by directly defining 31 and 32 as appropriate
coalesced connectives in the adjoint logic.

4.6 Intuitionistic Labelled Deduction

Finally, consider a labelled deduction sequent calculus system with an entail-
ment relation Γ ` A[p] where Γ consists of a set hypotheses also of the form
A[p]. The worlds p are drawn from a set M .

All ordinary logical connectives such as ∧ exist and have rules that pass
along the ‘world part’ [p] of the entailment unmolested, i.e.

Γ ` A[p] Γ ` B[p]

Γ ` A ∧B[p]

Γ, A[p], B[p] ` C[r]

Γ, A[p] ` C[r]

and it possesses a connective @p with rules

Γ ` A[q]

Γ ` @qA[p]

Γ, A[q] ` C[r]

Γ,@qA[p] ` C[r]

Then this is just the special case of adjoint logic where the relation on M is
entire, i.e. p ≤ q for every p, q. The connective @p is equivalently translated
(when ‘at world q’) as Fp≥q or Up≤q. Since no pair of modes of truth fail to be
connected, no modal restriction obtains, and @p is ambipolar.
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