
Higher-Order Constraint Simplification
In Dependent Type Theory

Jason Reed ∗

Carnegie Mellon University
Pittsburgh, USA

jcreed@cs.cmu.edu

Abstract
Higher-order unification is undecidable, but has fragments which
admit practical algorithms, which are used extensively in logical
frameworks. For example, it is decidable whether unification prob-
lems in the pattern fragment are solvable, and they enjoy unique
most general unifiers when they are.

Often we wish to treat more general problems which are
nonetheless solvable by incrementally reasoning about the parts of
them that fall in the pattern fragment after more progress has been
made — to this end constraint simplification algorithms have been
proposed, which work on the so-called dynamic pattern fragment.
However, their theory turns out to be surprisingly subtle. The con-
straint simplification algorithm implemented in Twelf, for instance,
is not terminating, despite the sketch of a proof of its termination
in the literature. We describe and prove correct a new, terminating
constraint simplification algorithm for a dynamic pattern fragment
of higher-order unification in a dependent type system, and discuss
its implementation.

Keywords unification, dependent types, logical frameworks

1. Introduction
Unification is the task of solving equations over terms in some lan-
guage, a problem of widespread utility in programming languages
and logical frameworks: it is used for type inference and recon-
struction algorithms, for the execution of programs in logic pro-
gramming languages, and for reasoning about the totality of func-
tions defined by pattern-matching clauses.

Type theories with features like higher-order function types and
dependent types permit powerful representation techniques, but the
design of unification algorithms for such languages is more com-
plicated. Even restricting attention to the simply-typed λ-calculus,
it is known that full higher-order unification is undecidable. How-
ever, useful decidable subsets of the problem have been carved
out. A particularly well-behaved fragment arises from the notion
of higher-order pattern [Mil91] identified by Dale Miller.

∗ The work was supported by the Fundação para a Ciência e Tecnologia
(FCT), Portugal, under a grant from the Information and Communications
Technology Institute (ICTI) at CMU.

[Copyright notice will appear here once ’preprint’ option is removed.]

The pattern fragment requires that metavariables (those for
which we seek solutions during unification) only appear, when
they are of function type, applied to a sequence of distinct λ-bound
variables. This restriction makes unification decidable and even
guarantees the existence of a most general unifier when there is
a unifier at all. In practice, however, the pattern fragment is more
restrictive than appropriate for many applications.

An empirical study of the limitations of the pattern fragment
and the usefulness of going beyond it can be found in Michaylov
and Pfenning [MP92]. They nonetheless also observed that the
majority of unification problems encountered in practice are still
in a dyamic extension of the pattern fragment. While an entire
unification problem might not be in the pattern fragment considered
statically, we may fruitfully try to first solve those parts of it
that are, letting the information we learn from them instantiate
variables and simplify other equations, perhaps bringing them into
the pattern fragment, enabling us to make new progress solving
them, and so on.

A constraint simplification algorithm along these lines was sug-
gested by Dowek et al. [DHKP96] as an extension to their algo-
rithm for higher-order pattern unification presented in the same pa-
per. However, no proof was given of the extension’s correctness,
and, as it happens, it fails to terminate on some inputs. (a coun-
terexample to termination is given in Section 2.2.1) The way the
algorithm can be coaxed into nontermination is somewhat subtle,
and has to do with a ‘simplification’ step that under some circum-
stances makes the unification problem more complex.

While this problem could be repaired by simply disallowing the
offending step, we would risk failing to solve unification problems
that are solvable by its use. The main contribution of this paper is
a new algorithm for constraint simplification that achieves termi-
nation by using a different simplification, one which does always
make the unification problem smaller in an appropriate sense. This
technique nonetheless emerges rather naturally out of existing ideas
in the study of pattern unification, as do certain aspects of its cor-
rectness proof.

Another contribution is a novel proof technique for showing cor-
rectness of unification in the presence of dependent types. While
we would ordinarily like to assume every equation is between two
objects of the same type, type dependencies create the possibility
of equations arising between terms of different types, or which are
between terms that are not well-typed at all. This is because as we
compare two function applications, the earlier arguments affect the
type of the later arguments, and if the former are not equal, the lat-
ter will not be of the same type. Conal Elliott [Ell90] dealt with
these issues in his PhD thesis, (as did Pym [Pym90] independently
at roughly the same time) but in a Huet-style pre-unification algo-
rithm, by using a rather complex invariant that equations can be
partially ordered to exhibit how the solvability of one guarantees

1 2009/5/9

the well-typedness of another. In our case, the argument is still not
entirely trivial, but we achieve some simplification by choosing the
typing invariant to be more straightforwardly that all equations are
well-typed modulo, in a suitable sense, the solvability of all equa-
tions.

The remainder of the paper is organized as follows. Section 2
describes the language in which we study unification. Section 3
gives the constraint simplification algorithm itself, and Section 4
outlines the proof of its correctnes.

2. Language
2.1 The Basic Language
The setting in which we wish to study the unification problem
is the dependent type theory LF [HHP93]. We take advantage of
several useful developments in the study of logical frameworks,
some comparatively recent and not yet in widespread use.

The first is restricting attention to only the canonical forms of
terms, those that are fully η-expanded and β normal, made possi-
ble by the observation by Watkins [WCPW03] that not only is it
straightfoward to impose this restriction in the grammar of the lan-
guage, but also that one can define an operation of hereditary sub-
stitution directly on canonical forms, a substitution operation that
hereditarily reducing any β-redices that just a single substitution
might have created, so that the output is again canonical.

Second, we restrict attention further to only ever consider ex-
pressions that are simply well-typed, sometimes known as ‘approx-
imately well-typed’ [Ell89], which means that they are well-typed
after all dependencies in types erased, and every Π turned into a
mere →. This simplifies many definitions and arguments; for in-
stance the argument that hereditary substitution always terminates
depends only on simple times, so if we only ever have simply-well-
typed terms, it is manifestly terminating and total.

Third, we employ the contextual modal type theory [NPP05]
built on top of LF, which provides a convenient and logically moti-
vated language for dealing with metavariables. In it metavariables
are logically hypotheses of categorical judgments corresponding to
the fact that we substitute a closed term for them. It also makes it
easy to describe the common implementation practice of lowering
function variables to base type by changing function application to
a notion of substitution.

Finally, the presentation is in spine form [CP97], where the ar-
guments to a function are grouped together into a ‘spine’, exposing
the head of the term separately.

The syntax of the language is

Kinds K ::= type | Πx:A.K
Types A, B, C ::= a · S | Πx:A.B

Normal Terms M, N ::= λx.M | R
Atomic Terms R ::= H · S | u[σ]

Heads H ::= c | x
Spines S ::= () | (M ; S)

Substitutions σ ::= · | σ, (y/x) | σ, (M/x)
Modal Substitutions θ ::= · | θ, (R//u)

Contexts Γ, Ψ ::= · | Γ, x : A
Modal Contexts ∆ ::= · | ∆, u :: (Ψ ` a · S)

As usual, A→ B abbreviates Πx:A.B where x does not appear
in B. We use X, Y in the sequel to uniformly denote expressions
of any of these syntactic sorts.

The kind and type levels are quite standard: kinds are formed
by Π-abstraction from the base kind ‘type’, and types are formed
by Π-abstraction from some base type a · S, where a is a constant
type family, applied to some arguments S.

The term language has functions λx.M and applications of
heads (either constants c or variables x) to spines S. The nov-

elty coming from contextual modal type theory is the expression
u[σ], which is a use of a metavariable u, under a suspended ex-
plicit substitution σ. Instead of directly considering metavariables
at function type, we follow the practice of lowering them to base
type and representing what would have been their arguments as
substitutions for a local context of variables Ψ. These substitutions
σ contain both term-for-variable replacements (M/x) as well as
variable-for-variable substitutions (y/x). The latter are instrumen-
tal in the definition of pattern substitutions below.

The principal typing judgments are

∆; Γ `M ⇐ A ∆; Γ ` R⇒ A ∆; Γ ` S : A > C

pronounced ‘M checks at type A’, ‘R synthesizes its type A’, and
‘S, if a head of type A is applied to it, yields an expression of type
C’, each in a context Γ and modal context ∆. We typically leave
the ∆ implicit when it is clear from context. Some of the more
salient typing rules are as follows. Those omitted are as in standard
presentations of LF.

Γ, x : A `M ⇐ B

Γ ` λx.M ⇐ Πx:A.B

x : A ∈ Γ Γ ` S : A > C

Γ ` x · S ⇒ C

Γ ` R⇒ a · S′ S = S′

Γ ` R⇐ a · S
u :: (Ψ ` a · S) ∈ ∆ Γ ` σ : Γ′

Γ ` u[σ]⇒ a · [σ]S

Γ ` · : ·
Γ `M ⇐ [σ]A′ Γ ` σ : Γ′

Γ ` (M/x).σ : (Γ′, x : A′)

y : A ∈ Γ A = [σ]A′ Γ ` σ : Γ′

Γ ` (y/x).σ : (Γ′, x : A′)

The notation [σ]X indicates the operation applying all the indi-
vidual substitutions in σ to the expression X (in constrast to u[σ],
where σ is simply remains inert as a suspended substitution, wait-
ing for u to be instantiated)

The definition of carrying out single substitutions is given by
the functions [M/x]X and [M | S], the latter giving essentially
the β-reduction of the function M against its arguments S, defined
as follow:

[M/x](x · S) = [M | [M/x]S]

[M/x](H · S) = H · ([M/x]S) (if x 6= H)

[M/x]() = () [M/x](N ; S) = ([M/x]N ; [M/x]S)

[M/x](λy.N) = λy.[M/x]N

[M/x](u[σ]) = u[[M/x]σ]

[M/x]((x/y).σ) = (M/y).([M/x]σ)

[M/x]((z/y).σ) = (z/y).([M/x]σ) (x 6= z)

[M/x]((M ′/y).σ) = ([M/x]M ′/y).([M/x]σ)

[λx.M | (N ; S)] = [[N/x]M | S]

[R | ()] = R

Note that since all expressions are assumed to be simply-well-
typed, both of these functions are total.

We also must specify when modal substitutions are well-
formed, and how they operate. These are the substitutions of closed
expressions for modal variables. For our purposes, we allow vari-
ables in the modal context to have types depending one another

2 2009/5/9

even when the graph of dependencies has cycles. This may seem
rather exotic, but it is justifiable by thinking of the entire context
∆ as assigning simple types first of all, and then refining these
declarations with dependent types once all the variables are in
scope. This approach has the advantage of eliminating the need
for reasoning about reordering of the modal context, and also di-
rectly reflects the typical implementation of unification, which uses
(intrinsically unordered) imperative reference cells for unification
variables, whose types can indeed in practice be cyclically depen-
dent during unification.

It is worth noting that when the algorithm succeeds and returns
a set of solutions, the variables that are still free may still have
cyclically dependent types. If the intended application of unifica-
tion prohibits this (such as the abstraction phase of type reconstruc-
tion in a logical framework) then one can simply check for cycles
and report an error if they are still present.

The typing rule for modal substitutions is
ui :: (Ψi ` Ai) ∈ ∆

θ = (R1//u1) . . . (Rn//un)

θAi = A

∆′, θΨi ` Ri ⇒ A (∀i ∈ 1 . . . n)

∆′ ` θ : ∆

which requires all terms Ri to have the type declared in ∆, after
θ has been applied to it. Carrying out the substitution θ before we
even know it is fully well-typed is meaningful because at least we
know by prior assumption that it is simply well-typed.

The operation of modal substitution θX is defined similarly to
ordinary substitution above, in that it is simply homomorphic on
nearly all cases, the exception being when we come to a modal
variable. We define θ(u[σ]) to be [θσ]R when (R/u) ∈ θ.

The important feature of modal substitutions is that they are
only constructed out of modal, not ordinary, hypotheses; and
so they represent appropriately the role of closed instances of
metavariables. The substitution principles for ordinary and modal
substitutions are as usual, for example

LEMMA 2.1. For any judgment J , if Γ ` M ⇐ A and Γ, x :
A, Γ′ ` J , then Γ, [M/x]Γ′ ` [M/x]J .

LEMMA 2.2. For any judgment J , if ∆′ ` θ ⇐ ∆ and ∆; Γ ` J ,
then ∆′; θΓ ` θJ .

2.2 Extensions
There are two further extensions we propose to this language. The
first and more important one is reifying information about variable
dependency with placeholders that stand for ‘dead’ variables. It can
be motivated by considering the counterexample to the termination
of the existing constraint simplification algorithm of Dowek et al.
[DHKP96]

2.2.1 Placeholders
Suppose o is a base type. Let ∆ consist of the metavariables u, v, w
all of type (z : o ` o). Let f be a constant of type o→ o. Without
setting up unification formally yet, consider the pair of equations

(λx.λy.u[x] =̇ λx.λy.f v[w[y]]

∧(λx.λy.v[x] =̇ λx.λy.u[w[y]])

and suppose we are trying to find solutions to u, v, w that satisfy
both of them.

Examine the first equation in particular. We notice that the
function λx.λy.u[x] on the left cannot use its second argument
at all, for u does not receive it as an argument. Therefore neither
can the right side of this equation (once v and w are instantiated)
mention y. However, since v is applied to an expression that itself
has the variable w in it, we do not know whether v or w projects
away its argument, but we know at least one of them must.

Notice that u’s instantiation must nonetheless be of the form
f(U ′ z) for some U ′ : o → o. We might hope that we are making
progress by creating a new variable u′ :: (z : o ` o) and carrying
out the substitution u ← f(u′[z]) — in fact, this is precisely what
the algorithm suggested in [DHKP96] does. But if we do, we only
arrive at the pair of equations

(λx.λy.f (u′[x]) =̇ λx.λy.f v[w[y]])∧

(λx.λy.v[x] =̇ λx.λy.f u′[w[y]])

which, after stripping the identical constants f from the first equa-
tion, leads only to

(λx.λy.u′[x] =̇ λx.λy.v[w[y]])∧

(λx.λy.v[x] =̇ λx.λy.f u′[w[y]])

Swapping the two equations and changing the names of the unifi-
cation variables, this is identical to the pair we started with, and the
algorithm may loop forever.

Our approach to fixing this problem is instead to directly em-
body the intuition that the occurrence of the bound variable y is
something that ‘cannot survive’ the eventual instantiation of both
v and w. This idea can be found implicitly in Tobias Nipkow’s al-
gorithm [Nip93] for higher-order pattern unification over simple
types. He makes use of the ‘deBruijn index −∞’ after computing
inverses of substitutions to stand for variables that do not occur in
the range of the substitution. Although Nipkow says it ‘smells of a
hack,’ we aim to show that its use can be theoretically justified.

We therefore introduce an explicit placeholder, written , for an
expression that occurs somewhere in an argument to a unification
variable, but for which we mean to require that every solution will
project it away:

Normal Terms M, N ::= · · · |

The definition of hereditary substitution is extended by saying
[M/x]() = and [| S] = .

Armed with this we can transform

λx.λy.u[x] =̇ λx.λy.f v[w[y]]

by instantiating u ← f v[w[]], which leads to the first equation
being turned into λx.λy.f v[w[]] =̇ λx.λy.f v[w[y]] and the
second equation becoming

λx.λy.v[x] =̇ λx.λy.f v[w[]]

It will turn out that we can reason about this latter equation using a
form of the occurs-check, and correctly reject it as unsolvable.

While = will continue to use below to mean strict syntactic
equality of two expressions up to α-varying bound variables, it will
be convenient to also define ≡ by saying that X ≡ X ′ if X = X ′

and also X, X ′ contain no occurrences of .

2.2.2 Free Variables
The other extension is a notion of variables m which are modal
like metavariables, but unlike them they are not contextual. To
say that they are modal means that they are declared in the modal
context∆ and are allowed to be used in an R in a modal substitution
containing (R/u). To say that they are not contextual means that
instead of being used under a substitution for local variables, they
take a spine of arguments, just as ordinary variables do.

Heads H ::= · · · | m
Modal Contexts ∆ ::= · · · | ∆, m :: A

The role of these variables is to represent free variables in a unfi-
cation problem whose type may involve metavariables, but which is
not meant to be instantiated during the course of unification. These

3 2009/5/9

arise naturally from wanting to use unification for type reconstruc-
tion in a dependent type theory. For example, if we encoded n× p
matrices, and the operation of matrix transposition M> and a theo-
rem claiming that if M>

1 = M2, then M>
2 = M1, we might write

something like

matrix : nat→ nat→ type
transpose : matrix N P → matrix P N → type
thm : transpose M1 M2 → transpose M2 M1 → type

in which the free variables N , P , M1, M2 are understood as
implicitly Π-bound, and whose types are to be determined by
type reconstruction via unification. Our knowledge of the type
of M1 can be represented as matrix u[·] v[·] for metavariables
u :: (· ` nat), v :: (· ` nat), for unification will determine what
u and v must be, but M1 itself is not open for instantiation, and is
represented therefore as a free variable.

The reason free variables take spines instead of substitutions so
that they may be conveniently compared for equality: equality on
spines is, as is typical for canonical-forms-only presentations of LF,
a simple matter of running down the syntax and ensuring everything
is literally identical up to α-conversion. For substitutions, because
of the presence of variable-for-variable replacement (y/x), equal-
ity is complicated by the fact that such a replacement can also be
represented as a term-for-variable replacement (η∗y/x) where η∗y
is the full η-expansion of y. For this reason we avoid in the sequel
ever posing the question of whether two substitutions are consid-
ered equal.

3. Unification
We now define the task of unification, and the constraint simplifi-
cation algorithm for it. A unification problem is written as ∆ ` P
where

Equation Sets P ::= > | P ∧Q
Equations Q ::= M =̇ M ′ | R =̇ R′

| S =̇ S′ | u =̇ R | u← R

The intended interpretation of ∆ ` P is a query whether there
exist instantiations of all the metavariables in ∆ that satisfy the
conjunction of the equations in P . The ‘equation’ u← R indicates
that we have found an instantiation for u, and that it is R. It differs
from the use of u =̇ R, in that in the latter, u may have other
occurrences in R, preventing us from carrying out an instantiation.
We often write just P instead of ∆ ` P when it is clear from
context.

The active metavariables of P is the set of metavariables
in P such that u ← R 6∈ P . A modal substitution θ =
(R1//u1) . . . (Rn//un) is ground if there are no occurrences of
metavariables in the Ri. Free variables m are still allowed, and in
fact will guarantee that unification problems are never trivially un-
solvable because the types of their metavariables are uninhabited,
because we always have the option of making up a free variable of
the same type. A solution to P is a ground modal substitution θ for
all the metavariables in ∆ such that

1. For every equation X =̇ X ′ ∈ P we have θX ≡ θX ′

2. For every u← R ∈ P we have (θR//u) ∈ θ

3. All the terms in θ are free of .

We write θ |= P if θ is a solution of P .
Let ~u be a subset of the metavariables in P . A ~u-solution to P is

a ground modal substitution for ~u that is a restriction of a solution
of P to the variables ~u. We write θ |=~u P in this case, and the set
of all such solutions is written Sol(P, ~u).

3.1 Algorithm
A state of the unification algorithm is either a set of equations in
context ∆ ` P or the constant ⊥, standing for failure. We say for
the sake of uniformity that Sol(⊥, ~u) = ∅.

A pattern substitution is a substitution σ that consists of only
distinct bound variables and underscores. Formally:

` · pattern

` σ pattern y 6∈ rng σ

` σ, (y/x) pattern

` σ pattern

` σ, (/x) pattern

A strong pattern substitution is one that has no underscores. We
use ρ to denote a pattern substitution, and ξ to denote a strong
pattern substitution.

We define the following auxiliary functions: ξ−1
Γ computes the

inverse of a strong pattern substitution whose codomain is the
context Γ.

ξ−1
· = ·

ξ−1
Γ,x = ξ−1

Γ ,
{

(y/x) if (x/y) ∈ ξ
(/x) otherwise.

ξ ∩ id replaces non-identity substitutions in ξ with .

· ∩ id = ·
(ξ, (x/x)) ∩ id = (ξ ∩ id), (x/x)
(ξ, (x/z)) ∩ id = (ξ ∩ id), (/z) (if x 6= z)

We say ρ \ x = (x1/x1) . . . (xn/xn) if (/x) ∈ ρ, and
x1, . . . , xn are the variables in dom(ρ) \ {x}. We say (Γ `
a · S) \ x = Γ′ ` a · S if the variable x does not occur free in
S or in any type in Γ. and Γ′ is Γ with that variable removed.

We use X̂{Y } to refer to an expression of syntactic class X
with a hole in it, where the hole has been replaced by the expression
Y , which may refer to variables bound in X . Further, X̂rig{Y }
refers to a rigid context in which Y occurs, that is, Y ’s occurrence
is not within the arguments σ of some metavariable occurrence
u[σ]. Similarly X̂srig{Y } refers to a strongly rigid context in
which Y occurs, that is, not within an argument to a metavariable,
nor within an argument to a bound variable x.

The algorithm consists of repeatedly applying the following
transition rules:

1. Decomposition.

(λx.M =̇ λx.M ′) ∧ P 7→ (M =̇ M ′) ∧ P
(H · S =̇ H · S′) ∧ P 7→ (S =̇ S′) ∧ P
(H · S =̇ H ′ · S′) ∧ P 7→ ⊥ (if H 6= H ′)
((M ; S) =̇ (M ′; S′)) ∧ P

7→ (M =̇ M ′) ∧ (S =̇ S′) ∧ P
() ∧ P 7→ P

Q̂rig{ } ∧ P 7→ ⊥

2. Inversion.

(u[ξ] =̇ R) ∧ P 7→ (u =̇ [ξ−1]R) ∧ P

3. Occurs-Check.

(u =̇ H · Ŝ{u[ξ]}) ∧ P 7→ (u =̇ H · Ŝ{ }) ∧ P

(u =̇ c · Ŝsrig{u[σ]}) ∧ P 7→ ⊥

4. Intersection.

(u =̇ u[ξ]) ∧ P 7→
{

P if ξ ∩ id = ξ
(u =̇ u[ξ ∩ id]) ∧ P otherwise

5. Pruning.

(∆, u :: (Γ ` A) ` Q̂rig{u[ρ]} ∧ P) 7→
(∆, u :: (Γ ` A), v :: ((Γ ` A) \ x) `

(u =̇ v[ρ \ x]) ∧ Q̂rig{u[ρ]} ∧ P)

4 2009/5/9

6. Instantiation.

(∆ ` (u =̇ R) ∧ P) 7→ ([R/u]∆ ` (u← R) ∧ [R/u]P)
(if u 6∈ FV (R))

The algorithm may nondeterministically choose any of these
steps, with the restriction that after Pruning, it must immediately
take an Instantiation step on the freshly created equation u =̇
v[ρ \ x]. This instantiation could have been incorporated into the
definition of pruning, obviating such a side condition, but it is sim-
pler for the proofs of correctness below to isolate the substitu-
tions that instantiation carries out. Furthermore steps that would not
cause the unification state to change at all (for example performing
intersection twice in a row on the same equation) are forbidden.

Whenever the entire problem consists of assignments u ← R
(with no R containing) the algorithm succeeds, and reports the
modal substitution induced by the assignments.

4. Correctness
The three facts we wish to show about the algorithm are that it
terminates, that it preserves solutions, and that it preserves well-
typedness of unification states.

THEOREM 4.1. The algorithm always terminates, resulting in one
of

• A solved state, where only assignments u← R remain in P
• A stuck state, i.e. one on which no transition rule applies
• Failure ⊥

Proof Consider the lexicographic order of

1. The number of active metavariables.
2. The total size of the local contexts of the active metavariables.
3. The total size of the terms in all the equations in the unification

problem, with considered smaller than any other term.

All transitions that change the state at all decrease this metric. Most
transitions decrease (3) and maintain (1) and (2). Pruning (with a
required instantiation step following it as described above) replaces
one metavariable with another one of a smaller context, decreasing
(2) and maintaining (1). Instantiation reduces (1).

As the algorithm progresses, each transition rule neither creates
nor destroys solutions.

THEOREM 4.2. If P0 7→ P1 then Sol(P0, ~u) = Sol(P1, ~u), where
~u is the set of metavariables of P0.

Proof By case analysis on the transition. Details deferred to the
appendix.

This has as an immediate consequence that if we reach a solved
state u1 ← R1∧· · ·∧un ← Rn, then θ = (R1//u1) . . . (Rn//un)
is a most general unifier of the original problem, since every so-
lution to the original problem is an instance of θ, because it is a
solution of u1 ← R1 ∧ · · · ∧ un ← Rn by invariant.

4.1 Preservation of Types
Defining the typing invariant for the algorithm is possibly the most
challenging part of the present work. There are two complicating
factors: one is that we work on equations in a fairly arbitrary order
despite the fact that typing of one equation depends on solvability
of another, and two is reasoning about placeholder . To handle
the first issue, we define what it means to be well-typed modulo a
unification problem P .

4.1.1 Typing Modulo
We say X ≡P X ′ (‘X is equivalent to X ′ modulo P ’) if, for any
ground θ that substitutes for the metavariables of X, X ′ that is a
solution of P , we have θX ≡ θX ′. This equivalence is only meant
to be asked of X, X ′ that are underscore-free, although P may have
underscores remaining in it. Clearly ≡P it is a partial equivalence
relation whose support is the set of underscore-free simply-typed
expressions. For all typing judgments Γ ` J , we define Γ `P J by
the same rules as for Γ ` J , except replacing the occurrences of =
in them with ≡P .

Generalizing to equivalence modulo P sometimes requires
more subtle care about which parts of judgments are input and
output. For example, the generalizations of the substitution princi-
ples for normal and atomic terms

LEMMA 4.3. If Γ `P M ⇒ A and Γ, x : B, Γ′ `P J and
A ≡P B, then Γ, [M/x]Γ′ `P [M/x]J .

LEMMA 4.4. If Γ `P R ⇒ A and u : (Ψ ` a · S) ∈ ∆ and
a · S ≡P A and Ψ `P J , then [R/u]∆; [R/u]Γ′ `P [R/u]J .

differ in that for atomic terms, we need to ‘slacken’ to account for a
possible equivalence modulo P rather than exact equality between
a · S and A, because the type A is an output of the process of
synthesizing a type for R.

From the fact that unification preserves solutions comes the fact
that equivalence and typing modulo P do not change when the
unification algorithm acts on P .

LEMMA 4.5. If P0 7→ P1 and A ≡P0 A′, then A ≡P1 A′.

Proof Let θ be given such that θ |= P1. Suppose the set of
metavariables of P0 is ~u: it may be smaller, but not bigger, than
that of P1. Thus θ

∣∣
~u
|=~u P1. By theorem 4.2, also θ

∣∣
~u
|=~u P0.

By assumption that A ≡P0 A′, we have θ
∣∣
~u
A = θ

∣∣
~u
A′, and so

θA = θA′, as required.

COROLLARY 4.6. Suppose P0 7→ P1 Then

• If ∆; Γ `P0 M ⇐ A, then ∆; Γ `P1 M ⇐ A.
• If ∆; Γ `P0 R ⇒ A, then exists A′ such that ∆; Γ `P1 R ⇒

A′ and A′ ≡P0 A.
• If ∆; Γ `P0 S : A > C, then exists C′ such that ∆; Γ `P1 S :

A > C′ and C′ ≡P0 C.

Proof By induction on the derivation of ∆; Γ `P0 J . Most cases
are simple appeals to the induction hypothesis on all components.
A more interesting case is when we deal with the following rule:

∆; Γ `P0 R⇒ A A ≡P0 B

∆; Γ `P0 R⇐ B

By induction hypothesis, there is an A′ such that ∆; Γ `P1 R ⇒
A′ and A ≡P0 A′. By transitivity, we have A′ ≡P0 B, and by
Lemma 4.5, A′ ≡P1 B. So we can form a derivation

∆; Γ `P1 R⇒ A′ A′ ≡P0 B

∆; Γ `P1 R⇐ B

4.1.2 Well-formedness of Unification States
To type an expression X that has placeholders in it, we will say
that X is well-typed if it is appropriately related to a well-typed
expression that is underscore-free. Define X ′ w X (pronounced
“X ′ is a completion of X”) to mean X ′ arises by replacing every

in X with some normal term, not necessarily the same term for
every .

5 2009/5/9

This means that if, during unification, we take some well-
formed X ′ and simply replace a normal subterm of it with , the
resulting term X will manifestly still be considered well-typed, be-
cause its immediately prior state X ′ w X is a witness to the fact
that X is suitably related to a well-typed expression. This makes
reasoning about the type preservation of the occurs-check and in-
tersection transitions straightforward.

Completions only play a role in the theory, and need not appear
at all in an implementation of the algorithm.

We can now define the judgments ∆ `P ′ P wf and ∆ `P ′

Q wf, that the unification problem P (resp. equation Q) is well-
formed modulo P ′:

∆′ w ∆ ∆′ `P ′ Q wf ∆ `P ′ P wf

∆ `P ′ Q ∧ P wf

∆ `P ′ > wf

∆; Γ `P ′ M ′
i ⇐ A M ′

i wMi (∀i ∈ {1, 2})

∆ `P ′ M1 =̇ M2 wf

∆; Γ `P ′ R′
i ⇒ Ai R′

i w Ri A1 ≡P ′ A2 (∀i ∈ {1, 2})

∆ `P ′ R1 =̇ R2 wf

∆; Γ `P ′ S′i : A > Ci S′i w Si C1 ≡P ′ C2 (∀i ∈ {1, 2})

∆ `P ′ S1 =̇ S2 wf

u :: (Γ ` a · S) ∈ ∆ Γ `P ′ R′ ⇒ A R′ w R A ≡P ′ a · S

∆ `P ′ u =̇ R wf

u :: (Γ ` a · S) ∈ ∆ Γ `P ′ R′ ⇒ A R′ w R A ≡P ′ a · S

∆ `P ′ u← R wf

We say ∆ ` P wf if there exists an extension ∆′ = ∆, m1 ::
A1, . . . , mn :: An of ∆ by modal variables such that ∆′ `P P wf.

First of all it is easy to show that taking a step in the set of
equations in the ‘modulo’ preserves typing.

LEMMA 4.7. If P0 7→ P1 and ∆ `P0 P wf, then ∆ `P1 P wf.

Proof By induction on the derivation of ∆ `P0 P wf, using Corol-
lary 4.6 to transfer typing judgments and equivalences forward.

Although, as noted above, the definitions are arranged to make
reasoning about the introduction of during the occurs-check and
intersection transitions easy, it still remains to justify why inversion
— the only other transition that creates underscores — preserves
types. We need to construct a completion of ξ−1 that is free of
underscores. Assuming Γ ` ξ : Γ′, this is defined as follows,
similarly to inversion, as

ξ∗· = ·

ξ∗Γ,x:A = ξ∗Γ,
{

(y/x) if (x/y) ∈ ξ
(u[ξ∗Γ]/x) otherwise, for a fresh u :: (Γ ` A).

This definition is in fact essentially identical to the standalone
definition of inversion given by Dowek et al. [DHKP96] when their
aim is to merely show that pattern substitutions have a one-sided
inverse. The important idea is that for every new underscore we
would have created by inversion, we insert a new metavariable of
the correct type, so that that the resulting expression is still well-
typed, and is a completion of inversion.

Since this definition is so close to inversion, it shares many
of its properties, in particular being a one-sided inverse. Most
importantly, however, the substitutions it outputs are well-typed for
well-typed inputs.

LEMMA 4.8. If Γ `P ξ : Γ′, then Γ′ `P ξ∗Γ : Γ.

Armed with this, we can show that unification preserves types.

THEOREM 4.9. If ∆0 ` P0 wf and (∆0 ` P0) 7→ (∆1 ` P1),
then ∆1 ` P1 wf.

Proof Deferred to appendix.

5. Conclusion
We have presented an algorithm for constraint simplification in
a higher-order dependent type theory. It admits a proof that it
terminates with either a well-typed most general unifier, failure, or
a list of unsolvable constraints. An implementation is underway as
a modification to the Twelf system [PS99], and there is a significant
corpus of existing code on which we can evaluate its efficiency and
effectiveness in type reconstruction and logic programming.

A future direction of work we would like to pursue is related
to treatment of the case in which the algorithm terminates with re-
maining constraints. To the extent these constraints can be reified
in a type theory as equational reasoning, discovering a set of ir-
reducible constraints is nearly as useful as finding a most general
unifier.

Furthermore, having a better theoretical foundation for unifica-
tion in our setting makes it possible to explore unification in LF
to extensions of it, for instance the hybrid logical framework HLF
[Ree07].

A. Appendix
A.1 Proof of Theorem 4.2
We require several standard lemmas.

LEMMA A.1. Substitutions commute:

• [M/x][N/y]X = [[M/x]N/y][M/x]X
• [M/x][N | S] = [[M/x]N | [M/x]S]

LEMMA A.2. Modal and normal substitutions commute:

θ[M/x]N = [θM/x]θN

LEMMA A.3. If an expression X contains no bound variable not
in rng ξ, then [ξ][ξ−1]X = X .

LEMMA A.4. [ξ−1][ξ]X = X .

COROLLARY A.5 (Injectivity of pattern substitutions). If [ξ]X =
[ξ]X ′, then X = X ′.

The proof of the theorem proceeds by case analysis on which
transition rule was taken.

• Decomposition: These are relatively easy. For example,

θ(λx.M) = θ(λx.M ′)

iff θM = θM ′, and similarly for homomorphic decomposition
of the other constructs. If an underscore appears in a rigid
position, then no substitution will get rid of it, and no≡ relation
can hold with underscores in it.
• Inversion: In this case P0 7→ P1 is u[ξ] =̇ R ∧ P 7→ u =̇

[ξ−1]R ∧ P . In one direction, suppose θ1 is a ~u-solution of P1,
so we have θ1u = θ1[ξ

−1]R. Thus θ1[ξ
−1]R = [ξ−1]θ1R has

no underscores, so θ1R must only have variables from rng ξ.
Hit both sides with ξ, and we find θ1u = θ1[ξ]u = [ξ]θ1u =
[ξ][ξ−1]θ1R = θ1R. Thus θ1 is also a ~u-solution of P0.
In the other direction, suppose θ0 is a ~u-solution of P0, which
means θ0(u[ξ]) = [ξ](θ0u) = θ0R.
Want to show: θ0u = θ0[ξ

−1]R. It will suffice to show, by
injectivity of pattern substitutions, that θ0R = [ξ]θ0[ξ

−1]R.

6 2009/5/9

But by assumption we already know that θ0R is in the range of
ξ, so [ξ]θ0[ξ

−1]R = [ξ][ξ−1]θ0R = θ0R.
• Occurs-Check:

There are two transitions. In both cases, observe that a subterm
u[σ] of R, being atomic, has one of two fates after the substitu-
tions of a putative solution θ |= P0 are carried out: either it is
completely projected away, or [σ]R′ occurs as a subterm of θR,
where (R′/u) ∈ θ. Thus the result of carrying out a substitu-
tion on, for example, a spine-with-hole to yield (θŜ) is still an
expression context, but it may not be linear even if the original
Ŝ was.
Consider the first transition

(u =̇ H · Ŝ{u[ξ]}) ∧ P 7→ (u =̇ H · Ŝ{ }) ∧ P

Let a solution θ of P0 be given, with (R′/u) ∈ θ. We know
then that R′ ≡ H · (θŜ){[ξ]R′}. From this we can see that
(θŜ) must project out its argument, for otherwise R′ is a larger
term than itself, since [ξ]R′ is the same size as R′, because ξ is
a pattern. Therefore there is no difference between θ(Ŝ{u[ξ]})
and Ŝ{ }, and the latter state still has θ as a solution
Consider the other transition

(u =̇ c · Ŝsrig{u[σ]}) ∧ P 7→ ⊥

Again let a solution θ of P0 be given, with (R′/u) ∈ θ. We
know R′ = c · (θŜrig){[θσ]R′}. We may use this equation to
expand its own right side again to see

R′ = c · (θŜsrig){c · ([θσ]θŜrig){[θσ][θσ]R′}}

Since Ŝsrig is strongly rigid, no substitution can project away
its argument, and we can continue telescoping this expression
to infer that R′ has arbitrarily many occurrences of the constant
c, a contradiction.
• Intersection: Since pattern substitutions only do renaming, any

solution of P0 must refrain from using any variables that are not
fixed by ξ. Thus any solution of P0 is still a solution of P1.
• Pruning: Clearly any solution of the latter state is also a solution

of the former. To show that no solutions are lost, consider a
solution θ to P0. It assigns some term R to u. If R has a free
occurrence of x, then θ(u[ξ]) = [ξ]R will have an underscore
in it, because (/x) ∈ ξ. Since u[ξ] occurs rigidly, this cannot
be projected away, and we have a contradiction. Therefore there
is a term without occurrence of x, which can be substitued for v
in P1: the solution of P1 consists of all of θ, plus this additional
substitution for v.
• Instantiation: By the commutativity of modal and ordinary sub-

stitutions.

A.2 Proof of Lemma 4.8
LEMMA A.6. If an expression X contains no bound variable not
in rng ξ, then [ξ][ξ∗]X = X .

LEMMA A.7. [ξ∗][ξ]X = X .

We want to show that ξ∗ itself is well-typed. First we note a
fact about the way that types of individual variables behave under
pattern substitution:

LEMMA A.8. Suppose Γ ` ξ : Γ′. If (x/y) ∈ ξ, and x : A ∈ Γ,
then y : B ∈ Γ′ such that [ξ]B = A.

Proof By induction on the typing of ξ. If ξ = (x/y).ξ0, then we
read the conclusion directly off the typing

x : [ξ]B ∈ Γ Γ ` ξ0 : Γ′

Γ ` (x/y).ξ0 : (Γ′, y : B)

Otherwise simply apply the induction hypothesis.

Having said that, we can now prove

LEMMA A.9. If Γ `P ξ : Γ′, then Γ′ `P ξ∗Γ : Γ.

Proof By induction on Γ. The base case is easy. Of the two non-
base cases, one is when the variable, say x, does not occur in rng ξ,
and ξ∗Γ,x:A = (u[ξ∗Γ]/x).ξ∗Γ. We can use the derivation arising from
the appeal to the induction hypothesis twice to get the derivation

u :: Γ ` A ∈ ∆ Γ′ `P ξ∗Γ : Γ

Γ′ `P u[ξ∗Γ]⇒ [ξ∗Γ]A [ξ∗Γ]A ≡P [ξ∗Γ]A

Γ′ `P u[ξ∗Γ]⇐ [ξ∗Γ]A Γ′ `P ξ∗Γ : Γ

Γ′ `P (u[ξ∗Γ]/x).ξ∗Γ : (Γ, x : A)

In the other case x does actually occur in the range of ξ as
(x/y) ∈ ξ, and so ξ∗Γ,x:A = (y/x).ξ∗Γ. By the previous lemma,
pick a B such that A = [ξ]B and y : B ∈ Γ′. Then y : [ξ∗Γ]A(=
[ξ∗Γ][ξ]B = B) ∈ Γ′, which together with a use of the induction
hypothesis allows the derivation

y : [ξ∗Γ]A ∈ Γ′ Γ′ ` ξ∗Γ : Γ

Γ′ ` (y/x).ξ∗Γ : (Γ, x : A)

A.3 Proof of Theorem 4.9
LEMMA A.10. If (M1; S1) =̇ (M2; S2) ∈ P0, and M ′

i w Mi,
then M ′

1 ≡P0 M ′
2.

Proof Let θ be given such that θ |= P0. In particular,

(θM1; θS1) ≡ (θM2; θS2)

But then θM1 ≡ θM2, and this equation must be underscore-free,
so θM ′

1 ≡ θM ′
2.

LEMMA A.11. Assume M1 ≡P M2 and X1 ≡P X2 and S1 ≡P

S2. Then [M1/x]X1 ≡P [M2/x]X2 and [M1 | S1] ≡P [M2 |
S2].

LEMMA A.12. Suppose A ≡P A′ and Γ ≡P Γ′.

• If Γ `P M ⇐ A, then Γ′ `P M ⇐ A′.
• If Γ `P R⇐ C, then there exists C′ such that Γ′ `P R⇐ C′

and C ≡P C′.
• If Γ `P S ⇐ A > C, then there exists C′ such that Γ′ `P

S ⇐ A′ > C′ and C ≡P C′.

Proof

The main theorem proceeds again by case analysis on the pos-
sible steps. If the step is not instantiation, we get the preservation
of well-formedness of all the equations we didn’t touch from the
above corollary, and what needs to be checked is just that the new
equations are still well-typed.

Case:
(λx.M1 =̇ λx.M2) ∧ P 7→ (M1 =̇ M2) ∧ P

By assumption there exist Γ, Πx:A.B, M ′
1 w M1, M

′
2 w M2

such that
∆; Γ `P0 λx.M ′

1 ⇐ Πx:A.B

7 2009/5/9

∆; Γ `P0 λx.M ′
2 ⇐ Πx:A.B

By inversion, we have

∆; Γ, x : A `P0 M ′
1 ⇐ B

∆; Γ, x : A `P0 M ′
2 ⇐ B

so after pushing forward with Lemma 4.6, we have

∆ `P1 M1 =̇ M2 wf

Case:

(M1; S1) =̇ (M2; S2) ∧ P 7→ (M1 =̇ M2) ∧ (S1 =̇ S2) ∧ P

By assumption there exist Γ, Πx:A.B, Ci, M
′
i w Mi, S

′
i w Si

such that

∆; Γ `P0 (M ′
i ; S

′
i)⇐ Πx:A.B > Ci

and C1 ≡P0 C2. By inversion, we have

∆; Γ `P0 M ′
1 ⇐ A ∆; Γ `P0 S′

1 ⇐ [M ′
1/x]B > C1

∆; Γ `P0 M ′
2 ⇐ A ∆; Γ `P0 S′

2 ⇐ [M ′
2/x]B > C2

At this stage we observe that the spine tails S′
1 and S′

2 are
at different types because they got different arguments substi-
tuted in. Take advantage of P0 to bring them back together. By
Lemma A.10, since (M1; S1) =̇ (M2; S2) ∈ P0, we know
M ′

1 ≡P0 M ′
2. Then [M ′

1/x]B ≡P0 [M ′
2/x]B by Lemma A.11.

Finally, using Lemma A.12 and ∆; Γ `P0 S′
1 ⇐ [M ′

1/x]B >
C1, we get the existence of C3 ≡P0 C1 such that

∆; Γ `P0 S′
1 ⇐ [M ′

2/x]B > C3

Using Lemma 4.6, push forward all the judgments from `P0 to
`P1 to see

∆ `P1 S1 =̇ S2 wf

Case:
u[ξ] =̇ R ∧ P 7→ u =̇ [ξ−1]R ∧ P

Say u :: (Γ′ ` a · S) ∈ ∆. By assumption there exist
Γ, A, R′ w R such that

Γ `P0 R′ ⇒ A

Γ `P0 ξ : Γ′

[ξ](a · S) ≡P0 A

Note that we didn’t have to consider ξ′ w ξ, because since ξ is
a strong pattern substitution, it has no underscores to fill in.
By Lemma 4.8, we get

Γ′ `P0 [ξ∗]R′ ⇒ [ξ∗]A

[ξ∗][ξ]a · S ≡P0 [ξ∗]A

It is easy to see that [ξ∗]R′ w [ξ−1]R. But [ξ∗][ξ]a·S ≡P0 a·S
by Lemma A.7.

Case: (∆ ` (u =̇ R) ∧ P) 7→ ([R/u]∆ ` (u ← R) ∧ [R/u]P),
with the side-condition that (u 6∈ FV (R)).
We have ∆′ w ∆, u :: (Γ ` a · S) ∈ ∆′, P ′ w P , R′ w R
such that ∆′; Γ `P0 R′ ⇒ A, a · S ≡P0 A. So by the modal
substitution theorem for `P0 , we can see

[R/u]∆ `P0 (u← R) ∧ [R/u]P wf

which we can push forward with Lemma 4.6 to get

[R/u]∆ `P1 (u← R) ∧ [R/u]P wf

Acknowledgments
Many thanks to Frank Pfenning, William Lovas, and Anders
Schack-Nielsen for helpful discussions.

References
[CP97] Iliano Cervesato and Frank Pfenning. A linear spine calculus.

Technical Report CMU-CS-97-125, Department of Computer
Science, Carnegie Mellon University, April 1997.

[DHKP96] Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank
Pfenning. Unification via explicit substitutions: The case of
higher-order patterns. In M. Maher, editor, Proceedings of
the Joint International Conference and Symposium on Logic
Programming, pages 259–273, Bonn, Germany, September
1996. MIT Press.

[Ell89] Conal Elliott. Higher-order unification with dependent types.
In N. Dershowitz, editor, Rewriting Techniques and Applica-
tions, 1989.

[Ell90] Conal M. Elliott. Extensions and Applications of Higher-
Order Unification. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1990. Available as Technical
Report CMU-CS-90-134.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A frame-
work for defining logics. Journal of the Association for Com-
puting Machinery, 40(1):143–184, January 1993.

[Mil91] Dale Miller. A logic programming language with lambda-
abstraction, function variables, and simple unification. Journal
of Logic and Computation, 1(4):497–536, 1991.

[MP92] Spiro Michaylov and Frank Pfenning. An empirical study
of the runtime behavior of higher-order logic programs. In
Proceedings of the Workshop on the Prolog Programming
Language, pages 257–271, 1992.

[Nip93] Tobias Nipkow. Functional unification of higher-order pat-
terns. In Proceedings of Eighth Annual IEEE Symposium on
Logic in Computer Science, pages 64–74, 1993.

[NPP05] Aleksander Nanevski, Frank Pfenning, and Brigitte Pientka.
Contextual Modal Type Theory. ACM Transactions on Com-
putational Logic, 2005.

[PS99] Frank Pfenning and Carsten Schürmann. System description:
Twelf — a meta-logical framework for deductive systems. In
H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202–
206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

[Pym90] D.J. Pym. Proofs, search and computation in general logic.
PhD thesis, University of Edinburgh, 1990.

[Ree07] Jason Reed. Hybridizing a logical framework. In P. Blackburn,
T. Bolander, T. Braner, V. de Paiva, and J. Villadsen, editors,
Proceedings of the International Workshop on Hybrid Logic
(HyLo 2006), 2007.

[WCPW03] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101, Department
of Computer Science, 2003.

8 2009/5/9

