
Logical Recipes I: Focusing

Jason Reed

June 16, 2013

Abstract

Exotic logics and logical phenomena abound: modal logics, substruc-
tural logics, constructive logics, classical logics; inversion, focusing, ‘jumbo
connectives’, structural rules for logical judgments. But all of these can be
cooked up out of intuitionistic first-order logic, while retaining isomorphic
sets of proofs.

Focusing is the sine qua non of all of these encodings, the tool that
allows careful control of proof construction. We begin by showing how it
can be constructed out of an unfocused substrate.

1 Introduction

The purpose of this note is to show how to obtain a focusing [And92] proof
theory for first-order logic via an encoding into ordinary, unfocused first-order
logic. Previous work [Ree09] achieved this via translation into linear logic, but
it turns out that it suffices to exploit the essential linearity of the intuitionistic
conclusion.

The important metatheoretic properties of this focused proof theory — cut
elimination, identity expansion, and the completeness of focusing — can be then
proved internally, in a way that depends mostly on simple derivations in the
target proof theory of the encoding.

2 Target Language

We start by describing the first-order intuitionistic logic we will be using as a
target of the encoding. The language is largely standard:

Propositions A ::= ∃x.A | A ∧A | A ∨A |
∀x.A | A⇒ A | > | ⊥ | a(~t) |
Ux.A | FtA

Contexts Γ ::= · | Γ, A

First-order terms are untyped, and propositional atoms a take a sequence ~t
of first-order term arguments. We leave the exact set of atoms, and first-order

1

init
Γ, a ` a

Γ, A ` B
⇒R

Γ ` A⇒ B

Γ ` A Γ, B ` C
⇒L

Γ, A⇒ B ` C

Γ ` A Γ ` B
∧R

Γ ` A ∧B

Γ, A,B ` C
∧L

Γ, A ∧B ` C

Γ ` Ai
∨Ri

Γ ` A1 ∨A2

Γ, A ` C Γ, B ` C
∨L

Γ, A ∨B ` C

>R
Γ ` >

⊥L
Γ,⊥ ` C

Γ ` A
∀Rx

Γ ` ∀x.A

Γ, {t/x}A ` C
∀L

Γ,∀x.A ` C

Γ ` {t/x}A
∃R

Γ ` ∃x.A

Γ, A ` C
∃Lx

Γ,∃x.A ` C

Γ, A ` #(x)
URx

Γ ` Ux.A

Γ ` {t/x}A
UL

Γ,Ux.A ` #(t)

Γ, A ` #(t)
FtR

Γ ` FtA

Γ ` A
FtL

Γ,FtA ` #(t)

Figure 1: Unfocused Proof Rules

function symbols unspecified. We sometimes leave the argument ~t of an atom
implicit. All we will need is that there is a one-argument atom # that is distinct
from any used by source-language propositions.

The proof rules are given in Figure 1. There are two slightly nonstandard
connectives, a quantifier Ux.A that binds a first-order variable x in A, and a
unary operator FtA. We say that they are only ‘slightly’ nonstandard because
it is easy to see that they are equivalent to aggregates of standard connectives
in the sense that

Ux.A a` (A⇒ #(x))⇒ #(x)

FtA a` A⇒ #(t)

So adding U and F to the first-order language is really no more unusual than
adding negation ¬ and giving it its own inference rules, even though intuition-
istic negation is definable in the sense that ¬A a` A ⇒ ⊥. Indeed, FtA
resembles a kind of term-parametrized negation of A, and Ux.A a quantified
double-negation.

The essential results concerning this sequent calculus are the identity and
cut theorems.

Theorem 2.1 (Identity) A ` A for any A.

Theorem 2.2 (Cut) If Γ ` A and Γ, A ` C, then Γ ` C.

These can be easily proved by standard methods. [Pfe94]

3 Source Language

We now describe the language of the focusing calculus that we encode into the
above first-order logic. The language of propositions is polarized into positive

2

and negative. There are shift operators ↑ and ↓ that coerce back and forth
between the two polarities. We borrow symbols from linear logic to distinguish
positive (⊗) from negative (&) conjunction, as well as the units (1 and >,
respectively) of those conjunctions.

Positives P ::= ↓N | ∃x.P | P ⊗ P | P ∨ P | 1 | ⊥ | a+(~t)

Negatives N ::= ↑P | ∀x.N | P ⇒ N | N & N | > | a−(~t)
Positive Contexts Ω ::= · | P,Ω

Negative Contexts Γ ::= · | Γ, N | Γ, 〈a+(~t)〉
Stable Conclusions Q ::= P | 〈a−(~t)〉

Conclusions R ::= N | Q

The characteristic property of focusing is that when a proposition is asyn-
chronous (positive on the left, negative on the right) it is eagerly inverted. If we
reach an atom during this stage, it becomes a suspension 〈a−(~t)〉 or 〈a+(~t)〉. In-
version on the left takes place in a deterministic (but arbitrary) order, governed
by an positive context Ω. Positive contexts are not subject to the usual struc-
tural properties of weakening, exchange, or contraction, but negative contexts
Γ are. When all inversion is finished, we may choose a proposition to focus on,
and as long as the focused proposition remains synchronous (negative on the
left, positive on the right) we must remain focused on it.

The three judgments of the logic are

Inversion Γ; Ω
f̀
R

Right Focus Γ
f̀

[P]
Left Focus Γ[N]

f̀
Q

and the proof rules for the focusing system are in Figure 2. The f decorating
the turnstile is merely to distinguish this logic from that of the target language.

We postpone stating any results about the focused logic, even though they
can be proved directly, because our purpose is to prove them through the fol-
lowing translation.

4 Translation

The translation consists of four functions.
N •t takes a negative proposition and a term t to an unpolarized proposition.
N◦ takes a negative proposition to an unpolarized proposition.
P • takes a positive proposition to an unpolarized proposition.
P ◦ A takes a positive proposition and an unpolarized proposition to an

unpolarized proposition.
They are defined as follows:

3

Γ;P f̀ N
⇒R

Γ; · f̀ P ⇒ N

Γ f̀ [P] Γ[N] f̀ Q
⇒L

Γ[P ⇒ N] f̀ Q

Γ; · f̀ N1 Γ; · f̀ N2

&R
Γ; · f̀ N1 & N2

Γ[Ni] f̀ Q
&L

Γ[N1 & N2] f̀ Q

Γ f̀ [P1] Γ f̀ [P2]
⊗R

Γ f̀ [P1 ⊗ P2]

Γ;P1, P2,Ω f̀ R
⊗L

Γ;P1 ⊗ P2,Ω f̀ R

Γ f̀ [Pi]
∨Ri

Γ f̀ [P1 ∨ P2]

Γ;P1,Ω f̀ R Γ;P2,Ω f̀ R
∨L

Γ;P1 ∨ P2,Ω f̀ R

>R
Γ; · f̀ >

1R
Γ f̀ [1]

Γ; Ω f̀ R
1L

Γ; 1,Ω f̀ R

⊥L
Γ;⊥,Ω f̀ R

Γ; · f̀ N
∀Rx

Γ; · f̀ ∀x.N

Γ[{t/x}N] f̀ Q
∀L

Γ[∀x.N] f̀ Q

Γ f̀ [{t/x}P]
∃R

Γ f̀ [∃x.P]

Γ, P ; Ω f̀ R
∃Lx

Γ;∃x.P,Ω f̀ R

Γ; · f̀ N
↓R

Γ f̀ [↓N]

Γ, N ; Ω f̀ R
↓L

Γ; ↓N,Ω f̀ R

Γ; · f̀ P
↑R

Γ; · f̀ ↑P

Γ;P f̀ Q
↑L

Γ[↑P] f̀ Q

a+R
Γ, 〈a+〉 f̀ [a+]

Γ, 〈a+〉; Ω f̀ R
a+L

Γ; a+,Ω f̀ R

Γ; · f̀ 〈a
−〉

a−R
Γ; · f̀ a−

a−L
Γ[a−] f̀ 〈a

−〉

Γ f̀ [P]
focR

Γ; · f̀ P

Γ[N] f̀ Q
focL

Γ, N ; · f̀ Q

Figure 2: Focusing Proof Rules

4

N N • t N◦

P ⇒ N P • ∧N • t P ◦N◦

N1 & N2 N1 • t ∨N2 • t N◦
1 ∧N◦

2

> ⊥ >
↑P P ◦#(t) Ux.FxP

•

∀x.N ∃x.(N • t) ∀x.(N◦)

a−(~t) a(~t, t) Ux.a(~t, x)

P P • P ◦A
P1 ⊗ P2 P •

1 ∧ P •
2 P1 ◦ (P2 ◦A)

P1 ∨ P2 P •
1 ∨ P •

2 P1 ◦A ∧ P2 ◦A
1 > A
⊥ ⊥ >
↓N N◦ (Ux.N • x)⇒ A
∃x.P ∃x.(P •) ∀x.(P ◦A)

a+(~t) a(~t) a(~t)⇒ A

We assume that we can choose a distinct target-language atom a for every
source language atom a+ and a−.

Define ⇓Γ and ⇑tQ by

⇓· = · ⇓(Γ, N) = ⇓Γ,Ux.N • x ⇓(Γ, 〈a+(~t)〉) = ⇓Γ, a(~t)

⇑tP = FtP
• ⇑t〈a−(~t)〉) = a(~t, t)

and Ω ◦A by
· ◦A = A (P,Ω) ◦A = P ◦ (Ω ◦A)

Say Ξ is a garbage context for x if it consists only of propositions ⇑tQ for
t 6= x.

Theorem 4.1 (Correctness of Translation) Suppose Ξ is a garbage context
for x. Then the following pairs of sequents have isomorphic sets of proofs:

1. Ξ,⇓Γ,⇑xQ ` Ω ◦#(x) ∼= Γ; Ω
f̀
Q

2. Ξ,⇓Γ ` P • ∼= Γ
f̀

[P]
3. Ξ,⇓Γ,⇑xQ ` N • x ∼= Γ[N]

f̀
Q

4. Ξ,⇓Γ ` Ω ◦N◦ ∼= Γ; Ω
f̀
N

Proof By induction on the relevant derivations. The key to the proof is that
for anything in Ξ, ⇓Γ, or ⇑xQ to be usable, the conclusion must be a translated
atom or of the form #(x), which can only happen in three circumstances:

1. in case 1, when Ω is empty, the conclusion can be #(x)

2. in case 2, when P = a+(~t), the conclusion can be a(~t).

5

3. in case 3, when N = a−(~t), the conclusion can be a(~t, t).

Outside of these special cases, we are forced to work on the right of the
(target-language) sequent, which matches the constraints of the focusing system.
Even then, nothing in Ξ is usable, because it was assumed to be garbage with
respect to the term variable x. Decomposing a proposition in ⇓Γ or ⇑xP in
case 1 corresponds to a use of the rule focL or focR, respectively. Working on
⇓〈a+(~t)〉 = a(~t) in case 2 or ⇑t〈a−(~t)〉 = a(~t, t) in case 3 corresponds to a use of
init.

5 Metatheory of Focusing

For convenience we can define a further pair translation on positive and negative
propositions like so:

N N∗

P ⇒ N P ∗ ⇒ N∗

N1 & N2 N∗
1 ∧N∗

2

> >
↑P Ux.FxP

∗

∀x.N ∀x.(N∗)

a−(~t) Ux.a(~t, x)

P P ∗

P1 ⊗ P2 P ∗
1 ∧ P ∗

2

P1 ∨ P2 P ∗
1 ∨ P ∗

2

1 >
⊥ ⊥
↓N N∗

∃x.P ∃x.(P ∗)

a+(~t) a(~t)

These satisfy

Lemma 5.1

1. Ux.N • x a` N∗

2. N◦ a` N∗

3. P • a` P ∗

4. P ◦A a` P ∗ ⇒ A

Proof By induction on the proposition.

Intuitively, the moral of the existence of the ∗ translation is that ‘all that’s
really necessary for focusing’ is that we interpret ↑ as a quantified double nega-
tion, and negative atoms as singly-negated.

Without doing any further inductions, we get identity and cut principles as
follows:

Theorem 5.2 (Identity) N
f̀
N and P

f̀
P

Proof By Theorem 4.1 it suffices to show Ux.N •x ` N◦ and FxP
• ` P ◦#(x).

But these easily follow from Lemma 5.1.

6

Theorem 5.3 (Cut) The following rules are admissible:

Γ ` [P] Γ;P ` Q

Γ ` Q

Γ; · ` N Γ[N] ` Q

Γ ` Q

Proof By Theorem 4.1 it suffices to show the admissibility of

⇓Γ ` P • ⇓Γ,⇑xQ ` P ◦#(x)

⇓Γ,⇑xQ ` #(x)

⇓Γ ` N◦ ⇓Γ,⇑xQ ` N • x

⇓Γ,⇑xQ ` #(x)

But we can reason that

⇓Γ ` P •

⇓Γ,⇑xQ ` P ◦#(x)

Lemma 5.1

P ◦#(x) ` FxP
•

cut
⇓Γ,⇑xQ ` FxP

•

[easy proof]

FxP
•, P • ` #(x)

cut
P •,⇓Γ,⇑xQ ` #(x)

cut
⇓Γ,⇑xQ ` #(x)

and

⇓Γ ` N◦

Lemma 5.1

N◦ ` Ux.N • x

⇓Γ ` Ux.N • x

⇓Γ,⇑xQ ` N • x
UL

⇓Γ,⇑xQ,Ux.N • x ` #(x)
cut

⇓Γ,⇑xQ ` #(x)

The completeness of focusing essentially amounts the ability to eliminate
double-shifts without affecting provability. Let X� (where X is either P or
N) be X with all instances of ↓↑ or ↑↓ removed. For convenience in proving
the following lemmas, abbreviate #A = Ux.FxA and let Γ ` A lax stand for
Γ,FxA ` #(x). Notice that all the usual rules of lax logic are admissible, i.e.

Γ ` A lax

Γ ` #A

Γ ` A

Γ ` A lax

Γ, A ` C lax

Γ,#A ` C lax

Here are some more easy lemmas about #:

Lemma 5.4

1. Ft#A a` FtA

2. (Ux.A) a` #(Ux.A)

3. N∗ a` #N∗

Proof

7

1. To prove Ft#A ` FtA, we reason that

A ` A

A ` A lax

A ` #A

Ft#A,A ` #(t)

Ft#A ` FtA

The other direction is

FtA ` FtA

FtA,#A ` #(t)

FtA ` Ft#A

2. The (Ux.A) ` #(Ux.A) direction is trivial. The other direction is

A ` A

A,Ux.A ` #(x)

A ` FxUx.A

#(Ux.A), A ` #(x)

#(Ux.A) ` Ux.A

3. N∗ a` Ux.N • x⇒ #(x) a` #Ux.N • x⇒ #(x) a` #N∗.

Theorem 5.5 (Completeness of Focusing)

1. N�∗ a` N∗

2. #P�∗ a` #P ∗

Proof

1. If N = ↑↓N0, we must show N�∗
0 a` #N∗

0 . In this case, appeal to the
induction hypothesis to see that N�∗

0 a` N∗
0 and Lemma 5.4 (part 3) to

see that N∗
0 a` #N∗

0 . Otherwise, N is some propositional connective. We
split cases.

Case: P ⇒ N . Reason that

P�∗ ⇒ N�∗ a` P�∗ ⇒ N∗ i.h.
a` P�∗ ⇒ Ux.N • x⇒ #(x) Lemma 5.1
a` Ux.N • x⇒ P�∗ ⇒ #(x)

8

a` Ux.N • x⇒ FxP
�∗

a` Ux.N • x⇒ Fx#P�∗ Lemma 5.4 (1)
a` Ux.N • x⇒ Fx#P ∗ i.h.
a` Ux.N • x⇒ FxP

∗ Lemma 5.4 (1)
a` Ux.N • x⇒ P ∗ ⇒ #(x)
a` P ∗ ⇒ Ux.N • x⇒ #(x)
a` P ∗ ⇒ N∗ Lemma 5.1

Case: ↑P . We must show #P�∗ a` #P ∗, but this follows immediately
from the induction hypothesis.

Case: N1 & N2. We must show N�∗
1 & N�∗

2 a` N∗
1 & N∗

2 but this follows
easily from the induction hypothesis.

Case: ∀x.N . We must show ∀x.N�∗ a` ∀x.N∗ but this follows easily from
the induction hypothesis.

Case: a−(~t). In this case N� = N and we are done.

Case: >. In this case N� = N and we are done.

2. If P = ↓↑P0, we must show #P�∗
0 a` ##P ∗

0 . By the induction hypothesis,
we know #P�∗

0 a` #P ∗
0 , and showing that #P ∗

0 a` ##P ∗
0 is an easy

tautology of lax logic. Otherwise we split cases on P .

Case: P1 ⊗ P2. Observe that #(A ∧B) a` #(#A ∧#B). We reason that

#(P�∗
1 ∧ P�∗

2)
a` #(#P�∗

1 ∧#P�∗
2) observation

a` #(#P ∗
1 ∧#P ∗

2) i.h.
a` #(P ∗

1 ∧ P ∗
2) observation

Case: P1 ∨ P2. Observe that #(A ∨B) a` #(#A ∨#B). We reason that

#(P�∗
1 ∨ P�∗

2)
a` #(#P�∗

1 ∨#P�∗
2) observation

a` #(#P ∗
1 ∨#P ∗

2) i.h.
a` #(P ∗

1 ∨ P ∗
2) observation

Case: ∃x.P . Observe that #∃x.A a` #(∃x.#A). We reason that

#(∃x.P�∗)
a` #(∃x.#P�∗) observation
a` #(∃x.#P ∗) i.h.
a` #(∃x.P ∗) observation

Case: a+(~t). In this case P� = P and we are done.

Case: 1. In this case P� = P and we are done.

9

Case: ⊥. In this case P� = P and we are done.

Case: ↓N . We must show #N�∗ a` #N∗, but this follows immediately
from the induction hypothesis.

References

[And92] J. M. Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297–347, 1992.

[Pfe94] Frank Pfenning. Structural cut elimination in linear logic. Technical
Report CS-94-222, Carnegie Mellon University, 1994.

[Ree09] Jason Reed. Focusing as token-passing. Unpublished note. Available
at http://www.cs.cmu.edu/∼jcreed/papers/synfocus2.pdf, 2009.

10

