
Logical Recipes II: Linear Logic

Jason Reed

June 27, 2013

Abstract

Linear logic has significant structure in it contexts, relative to ordinary
intuitionistic logic. Assumptions cannot be freely duplicated or dropped,
but are managed in a multiset. We show how to reduce its context struc-
ture to a data structure at the term level in first-order logic. This is
focusing-compatible: a focusing proof theory for linear logic can be read
off from the translation.

1 Introduction

The purpose of this note is to show how to obtain a focusing [And92] proof
theory for linear logic via an encoding into focused first-order logic.

Two important metatheoretic properties of the proof theory for linear logic
— cut elimination, identity expansion — come for free because the translation
simply maps propositions to propositions uniformly. The completeness of focus-
ing for linear logic can be then proved internally, in a way that depends mostly
on simple derivations in the target proof theory of the encoding.

2 Target Language

The target language of this recipe is the source language of the previous one,
namely focused first-order intuitionistic logic. We list the language of its propo-
sitions (apart from atoms) here, and refer the reader to [Ree13] for its proof
theory.

Positives P̄ ::= ↓N | ∃x.P̄ | P̄ ⊗ P̄ | P̄ ∨ P̄ | 1 | ⊥
Negatives N̄ ::= ↑P̄ | ∀x.N̄ | P̄ ⇒ N̄ | N̄ & N̄ | >

We write bars over all propositional metavariables just to distinguish them
from the P and N of the source language below.

To represent linear logic, we will break up the untyped domain t of first-order
terms into a few distinct sorts. There will be resources, frames, and structures.
A structure represents the shape of a linear logic sequent. A resource represents
the shape of a sequent minus its conclusion, in other words, a context. A frame

1

represents the shape of a sequent minus one hypothesis, in other words, a context
and a conclusion.

Resources r ::= ρ | r ⊗ r | 1
Frames f ::= φ | r (f

Structures s ::= r . f

We write ρ for resource variables and φ for frame variables. We will have no
need for structure variables. The reuse of linear logic symbols ⊗, 1,(is inten-
tional and meant to be suggestive. We will see that resources ‘go with’ positive
propositions, and frames ‘go with’ negatives in such a way that this use of these
symbols in connection with the propositional connectives they judgmentally in-
ternalize makes sense.

We also allow equations between first-order terms in the target language, and
impose the following equational theory on resources, frames, and structures:

r1 ⊗ (r2 ⊗ r3) = (r1 ⊗ r2)⊗ r3

r1 ⊗ r2 = r2 ⊗ r1
r ⊗ 1 = 1

r1 ⊗ r2 . f = r1 . r2 (f

This appears to be cheating a little, since we said nothing about equality in
the previous recipe. Notionally what we are doing is adduing = as a negative
atomic formula on two terms, in which case the axioms become mere hypotheses
in an extra globally present context. The reason we choose negative polarity
is so that we can see that the axioms can only be used when the conclusion
is alread an equality. This isolates equational reasoning from the rest of proof
search. Technically, to obtain true focal adequacy with respect to linear logic,
we would need to impose proof-irrelevance as soon as we invert an axiom t = t
on the right. In the sequel, however, we will freely use the equations as if they
are definitional equalities.

Note that because of these equations, every structure expression can be
normalized into the form

ρ1 ⊗ · · · ⊗ ρn . φ
where the parenthesization and order of the ρs is immaterial. This is the shape
of a linear logic context: a collection of hypotheses and a conclusion.

We require one negative atom #−(s) which, when it occurs in the conclu-
sion of the target language sequent, represents the current linear logic sequent.
However, since s has a unique top-level function symbol ., and since such atoms
occur so frequently, we just write r . f instead of #−(r . f).

We require one positive atom b+(a−, f) for each source-language negative
atom, and one positive atom b+(a+, r) for each source-language positive atom.
Yes, you read correctly: the target-language atom b+ is positive regardless of the
polarity of the source-language atom, although the sort of its second argument
differs. (cf. the above comment that frames go with negative and resources go
with positive)

2

3 Source Language

We now describe focused intuitionistic linear logic. As always with focusing
proof theories, the language of propositions is polarized into positive and nega-
tive. There are again shift operators ↑ and ↓ that coerce back and forth between
the two polarities.

Positives P ::= ↓N | P ⊗ P | P ⊕ P | 1 | 0 | a+ |!N
Negatives N ::= ↑P | P (N | N & N | > | a−

Positive Contexts Ω ::= · | P,Ω
Negative Contexts Γ ::= · | Γ, N | Γ, N valid | Γ, 〈a+〉
Linear Hypotheses H ::= N | 〈a+〉
Stable Conclusions Q ::= P | 〈a−〉

Conclusions R ::= N | Q

The three judgments of the logic are

Inversion Γ; Ω `̀R
Right Focus Γ `̀ [P]

Left Focus Γ[N] `̀Q

and the proof rules for the focusing system are in Figure 1. The ` decorating
the turnstile is merely to distinguish this logic from that of the target language.
We write ∆ for a Γ that consists only of N valid hypotheses. These N valid
hypotheses are allowed to be subject to weakening and contraction; linear hy-
potheses N are not.

4 Translation

We make the abbreviations

• Ufρ.P̄ = ∀ρ.P̄ ⇒ ρ . f and

• Urφ.P̄ = ∀φ.P̄ ⇒ r . φ.

The core of the translation consists of two functions. Nf takes a negative
proposition and a frame to a target-language positive proposition. P r takes a
positive proposition and a resource to a target-language positive proposition.
They are defined in Figure 2.

Here are a few further definitions so that we can state the adequacy of the
translation: For any vector ~r of resources, define ⇓~rΓ

⇓·· = · ⇓~r,r(Γ, H) = ⇓~rΓ, (⇓rH)

and ⇓rH by
⇓rN = Urφ.Nφ ⇓r〈a+〉 = 〈b+(a+, r)〉

Define ⇓∆ and ⇑fQ by

⇓· = · ⇓(∆, N valid) = ⇓∆,U1φ.Nφ

3

Γ;P `̀ N
(R

Γ; · `̀ P (N

Γ1 `̀ [P] Γ2[N] `̀ Q
(L

Γ1,Γ2[P (N] `̀ Q

Γ; · `̀ N1 Γ; · `̀ N2
&R

Γ; · `̀ N1 & N2

Γ[Ni] `̀ Q
&L

Γ[N1 & N2] `̀ Q

Γ1 `̀ [P1] Γ2 `̀ [P2]
⊗R

Γ1,Γ2 `̀ [P1 ⊗ P2]

Γ;P1, P2,Ω `̀ R
⊗L

Γ;P1 ⊗ P2,Ω `̀ R

Γ `̀ [Pi]
⊕Ri

Γ `̀ [P1 ⊕ P2]

Γ;P1,Ω `̀ R Γ;P2,Ω `̀ R
⊕L

Γ;P1 ⊕ P2,Ω `̀ R

>R
Γ; · `̀ >

1R
∆ `̀ [1]

Γ; Ω `̀ R
1L

Γ; 1,Ω `̀ R

0L
Γ; 0,Ω `̀ R

Γ; · `̀ N
↓R

Γ `̀ [↓N]

Γ, N ; Ω `̀ R
↓L

Γ; ↓N,Ω `̀ R

Γ; · `̀ P
↑R

Γ; · `̀ ↑P

Γ;P `̀ Q
↑L

Γ[↑P] `̀ Q

a+R
Γ, 〈a+〉 `̀ [a+]

Γ, 〈a+〉; Ω `̀ R
a+L

Γ; a+,Ω `̀ R

Γ; · `̀ 〈a−〉
a−R

Γ; · `̀ a−

a−L
Γ[a−] `̀ 〈a−〉

Γ `̀ [P]
focR

Γ; · `̀ P

Γ[N] `̀ Q
focL

Γ, N ; · `̀ Q

Γ[N] `̀ Q
foc!

Γ, N valid; · `̀ Q

∆; · `̀ N
!R

∆ `̀ [!N]

Γ, N valid; Ω `̀ R
!L

Γ; !N,Ω `̀ R

Figure 1: Focused Linear Logic Proof Rules

N Nf

P (N ∃ρ.P ρ ∧ ∃φ.Nφ ∧ f = ρ(φ

N1 & N2 Nf
1 ∨N

f
2

> 0
↑P ↓Ufρ.P ρ
a− b+(a−, f)

P P r

P1 ⊗ P2 ∃ρ1.P ρ11 ∧ ∃ρ2.P
ρ2
2 ∧ r = ρ1 ⊗ ρ2

P1 ⊕ P2 P r1 ∨ P r2
1 r = 1
0 0
↓N ↓Urφ.Nφ

!N r = 1 ∧ ↓U1φ.Nφ

a+ b+(a+, r)

Figure 2: Translation

4

and
⇑fP = Ufρ.P ρ ⇑f 〈a−〉 = 〈b+(a−, f)〉

Define Ω~r by
·· = · (P,Ω) · (r, ~r) = P r,Ω~r

Say Ξ is a garbage context for s if it consists only of propositions ⇑φQ and
⇓ρH for φ 6∈ s and ρ 6∈ s.

When ~ρ = (ρ1, . . . , ρn), we write ⊗(~ρ) for ρ1 ⊗ · · · ⊗ ρn.

Theorem 4.1 (Correctness of Translation) Suppose Ξ is a garbage context
for x. Then the following pairs of sequents have isomorphic sets of proofs:

1. Ξ,⇓∆,⇓~ρΓ,⇑φQ; Ω~ρ0 ` #(⊗(~ρ~ρ0) . φ)) ∼= Γ; Ω `̀Q
2. Ξ,⇓∆,⇓~ρΓ; Ω~ρ0 , Nφ ` #(⊗(~ρ~ρ0) . φ) ∼= Γ; Ω `̀N
3. Ξ,⇓∆,⇓~ρΓ,⇑φQ ` [N⊗(~ρ)(φ] ∼= Γ[N] `̀Q
4. Ξ,⇓∆,⇓~ρΓ ` [P⊗(~ρ)] ∼= Γ `̀ [P]

Proof By induction on the relevant derivations. The key to the proof is that
in nearly every case, focusing tightly constrains both sides of the isomorphism.
The only case where we get to choose what to work on is case 1 when Ω is
empty. In this case, we must show

Ξ,⇓∆,⇓~ρΓ,⇑φQ; · ` #(⊗(~ρ) . φ)) ∼= Γ; · `̀Q

Decomposing a proposition in ⇓∆ or ⇓~ρΓ or ⇑φQ corresponds to a use of
the rule foc! or focL or focR, respectively. It is easy to see that any attempt
to focus on a proposition in Ξ will meet with immediate failure, by reasoning
about the definition of garbage context.

5 Metatheory of Focusing

Since this translation is ‘one-sided’ (in the sense that every linear logic proposi-
tion maps down to a single focused first-order logic proposition) rather than the
‘two-sided’ translation we used to encode focusing itself (where the translation
depended on whether the source proposition occurred in a negative or positive
position), the identity and cut theorems for linear logic are inherited directly
from the same theorems for the focused logic. It remains to show that focusing
is complete for linear logic.

The completeness of focusing again essentially amounts to the ability to
eliminate double-shifts without affecting provability. Let X� (where X is either
P or N) be X with all instances of ↓↑ or ↑↓ removed.

Note that in the target language we can easily prove

Lemma 5.1 (Brouwer’s Lemma)

1. Ufρ.↓Uρφ.↓Uφρ′.P̄ a` Ufρ′.P .

5

2. Urφ.↓Uφρ.↓Uρφ′.P̄ a` Urφ′.P .

With this lemma it is more or less straightforward to obtain

Theorem 5.2 (Completeness of Focusing) For any r, f , we have

1. Urφ.N�φ a` Urφ.Nφ

2. Ufρ.P�ρ a` Ufρ.P ρ

Proof If N = ↑↓N0 or P = ↓↑P0, apply Brouwer’s Lemma. Otherwise we split
cases on the proposition. The most interesting cases are the multiplicatives (
and ⊗. We show the case for (.

Here we must show

Urφ.∃ρ.P�ρ ∧ ∃φ0.N�φ0 ∧ φ = ρ(φ0 a` Urφ.∃ρ.P ρ ∧ ∃φ0.Nφ0 ∧ φ = ρ(φ0]

We do this by reasoning in the target language. The adjunction axiom
r1 ⊗ r2 . f = r1 . r2 (f turns out to be crucial to our ability to apply the
induction hypothesis.

We reason like so:

Urφ.(∃ρ.P�ρ ∧ ∃φ0.N�φ0 ∧ φ = ρ(φ0)
a` ∀ρ.P�ρ ⇒ ∀φ0.N�φ0 ⇒ r . (ρ(φ0)
a` ∀ρ.P�ρ ⇒ ∀φ0.N�φ0 ⇒ r ⊗ ρ . φ0 adjunction
a` ∀ρ.P�ρ ⇒ Ur⊗ρφ0.N

�φ0

a` ∀ρ.P�ρ ⇒ Ur⊗ρφ0.N
φ0 i.h.

a` ∀ρ.P�ρ ⇒ ∀φ0.Nφ0 ⇒ r ⊗ ρ . φ0
a` ∀ρ.P�ρ ⇒ ∀φ0.Nφ0 ⇒ ρ . r (φ0 adjunction
a` ∀φ0.Nφ0 ⇒ ∀ρ.P�ρ ⇒ ρ . r (φ0
a` ∀φ0.Nφ0 ⇒ Ur(φ0ρ.P�ρ

a` ∀φ0.Nφ0 ⇒ Ur(φ0ρ.P ρ i.h.
a` ∀φ0.Nφ0 ⇒ ∀ρ.P ρ ⇒ ρ . r (φ0
a` ∀φ0.Nφ0 ⇒ ∀ρ.P ρ ⇒ r . ρ(φ0 adjunction
a` Urφ.(∃ρ.P ρ ∧ ∃φ0.Nφ0 ∧ φ = ρ(φ0)

References

[And92] J. M. Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297–347, 1992.

[Ree13] Jason Reed. Logical recipes I: Focusing. Unpublished manuscript,
2013.

6

