
Notes

Jason Reed

March 15, 2007 – February 8, 2009

2007.3.15
Sometimes we take some connective in a position where it is not invert-

ible and by judgmental brute force make it so. For example, taking

Γ ` C

Γ ` C ∨D

Γ ` D

Γ ` C ∨D
to

Γ ` C,D,∆

Γ ` C ∨D,∆
and modifying ⊃ E to be the modal

Γ, C ` D

Γ ` C ⊃ D,∆
Or for another example, introducing contextual non-modal logic to make

the implication sequent left rule be something like

Γ, [Ψ, A]B ` C

Γ, [Ψ]A ⊃ B ` C
and inventing a structural rule

Γ ` Ψ Γ, A+ ` C

Γ, [Ψ]A+ ` C
Where A+ is supposed have a positive connective on top, and Γ ` Ψ

is not a classical sequent, but one where the right-hand side is interpreted
conjunctively, and the proof-term would be a substitution.

The other case I can think of is the continuation of the first example
above of ‘classicalization’ of disjunction by making implication invertible
again on the right, by inventing labels

1

Γ, C[pa] ` D[pa]
⊃Ra

Γ ` C ⊃ D[p],∆
This seems even more exotic than the other two, for it doesn’t appear to

be simply unpacking the connective as a judgment and permitting whatever
derivations happen to be admissible underneath it. However, maybe it
could be put in that form, if one thinks of the world-paths as actually
being syntactic paths.

The other thought I had is that maybe all of these things are ‘fake’ or
at least unnecessary judgmental innovations if all they signal is a certain
kind of focussing discipline. The sequence of asynchronous decompositions
and finally application of a structural rule in the case of the contextual
left-asynchronous ⊃ may allow proofs to line up one-for-one with proofs in
a system where implication is left synchronous but consecutive synchronous
decompositions are required.

I would like to run machine learning algorithms on existing kerning
tables as a function of obvious features like smallest interspline distance
and area between right and left sidebearing splines.

An old idea: learn a mapping between letters and notes of two durations.
An octave from C to C gives me thirteen tones, and two durations gives
me twenty-six letters.

2007.3.16
A pursuit game where each player has a ‘seeker’ and a ‘target’ which

move around on a graph that the player builds during the course of the
round. The speed that either item travels along a graph edge is inversely
proportional to the edge’s length; so that investing a whole bunch of vertices
along a line make travel across it faster. Players score points when their
seeker is close to their opponent’s target.

2007.3.17
Thoughts on Baez’s “Categorification”

• “Looping” is a name for the process of getting a k+1-tuply monoidal
n − 1-category from a k-tuply monoidal n-category by choosing an
object of it and index-shifting, getting a new operation.

• The coherence laws for braided (and perhaps plain) monoidal cate-
gories don’t imply that every isomorphism is equal. (!?) This compels
me to ask: why are these called “coherence laws” then? Even if that
is answered, why do we know we have the right coherence laws?

2

• A possible answer is that the coherence laws for n-categories arise
naturally from thinking about coherence sensibly, and the looping
process trashes this property, but nonetheless canonically says what
the higher-order laws (whether we call them “coherent” or not) for
k-tuply monoidal n-categories should be.

On “Higher-Dimensional Algebra III”:

• The “Microcosm Principle” has a formalization! It’s something like:
‘O-algebra objects can be defined in any 1-coherent O-algebra’. A
1-coherent O-algebra is something like a once-categorified O-algebra.

• Monoid object actions can be defined even for a monoidal category
acting on another category. They are referred to as ‘riding’ this action
functor. Say we have an action of a monoidal category M on a
category C. A : M × C → C. Write this as (m, c) 7→ m ⊗ c. So
suppose m actually is a monoid object in M. An action of m on
c ∈ C is a map α : m⊗ c→ c such that

m⊗ (m⊗ c)
1⊗ α- m⊗ c

(m⊗m)⊗ c
�

∼

m⊗ c

µ⊗ 1

?

α
- c

α

?

and similarly for identities.

• Operads are monoid objects in a certain monoidal category.

Define the SMCC fam(C) ‘families in C’ to have objects that are
sequences of objects from C, and morphisms

(x1, . . . , xn)→ (y1, . . . , ym)

consist of specifying a bijection σ : {1, . . . , n} → {1, . . . ,m} and a
family of morphisms fi : xi → yσ(i). The monoidal structure is con-
catenation of object sequences. This is the free SMCC on C, I think?

Define the category prof(C) ‘profiles in C’ to be fam(C)op ×C.

3

Define the category sig(C) ‘signatures in C’ to be Setsfam(C)op×C.

I don’t quite see the monoidal structure of sig(C), but it’s supposed
to have one. Similarly there’s allegedly an obvious action from sig(C)
to SetsC, called the ‘tautologous action’.

A C-operad is a monoid object in sig(C). An alebra of an operad O is
an action of O on some functor F ∈ SetsC that rides the tautologous
action mentioned above.

2007.3.18
Liang and Nadathur’s “Tradeoffs in the Intensional Representation of

Lambda Terms”.

• Good source of example higher-order logic programs

• The penalty incurred in deBruijn form of having to renumber things
exists, but is not onerous.

• Dependency annotations help with ‘eager’ implementations, but this
advantage is obliterated by moving to a lazy and sharing approach,
for which dependency annotations don’t seem to help any.

2007.3.19
Reynolds lecture on separation logic

• Separation logic is basically a set of sound rules with respect to the
semantics of heaps. Completeness is an impossible goal, just as it is
with type systems with respect to program correctness.

• Using stacks of variables is kind of crazy. Aren’t they just special bits
of heap that are guaranteed to be not addressable?

HOL guy (John Harrison) talk

• Hilbert’s 17th problem: a polynomial is positive semidefinite if it’s a
sum of squares of rational functions.

• We can drop the generalization to rational functions if the polynomial
is univariate or a quadratic form. (i.e. every term is exactly degree
two)

• The Nullstellensatz: Over an ACF, polynomials pk have no common
solution iff there exist ‘cofactors’ qk such that pkq

k = 1.

4

• The Realstellensatz: Over a real closed field, polynomials pk have
no common solution iff there exist ‘cofactors’ qk and sj such that
pkq

k + sjsj = −1.

2007.3.20
Realization: trying to do proof irrelevance via focusing as if it were @

doesn’t work, because the ‘brackets’ type operator is bipolar. The elimina-
tion rule must blur, and so do a let-binding, and must therefore deal with
commuting conversions.

2007.3.21

Fix an injective notion of pairing 〈, 〉 : N × N → N. Say a model of
computation is a partial function f : N ⇀ N. We require axiomatically:

Identity: There exists idf such that ∀x.f〈idf , x〉 = x.
Composition: Given k1 and k2, there exists k such that

∀x.f〈k, x〉 = f〈k1, f〈k2, x〉〉

Universality: There is uf : N such that f〈uf , x〉 = f x for all x.
Say f ≤g h iff ∃k.∀x.f x = h(g〈k, x〉)
Say f ≡g h iff ≤g holds in both directions.
By Identity and Composition, this yields a bicategory for each g. The

1-cells are the ks that witness ≤g. 2-cells are extensional equivalence of
g-functions denoted by integers.

Conjecture If f ≡f g, then f ≡g g.

2007.3.22
Gustavo talked yesterday about the idea of informal proofs. He made

the claim that most published informal proofs are probably correct. I went
off on my usual ambiguity-of-measure rant, but there’s a separate issue that
even apart from that issue, if you look at a single claimed result, the issue of
what the claim is being made really is is subject to informal understanding.
Of course different formalizers will arrive at different proofs, but they will
also arrive at different formalizations of the claim.
2007.3.23

From the discussion at Passport last Wednesday, the usual bullshit came
out of a discussion on what Art is. For the time being I still cling happily
to the Wittgensteinian point of view that there is no essential answer to
the question — I have a tendency that I am not particularly proud of (em-
barrassed by its arrogance) to hope a priori that the course of my life might

5

follow W’s biography and leave me with still greater conceptual reorgani-
zations later in my life.

This point of view could be resummarized as saying, there does exist
data out in the world concerning what we do call art, though this data is
fuzzy, inconsistent, and hard to acquire. Under greater greatest scrutiny, it
resolves merely into every instance of something being called art, with no
necessary pattern binding it together, and under even greater reductionism,
we arrive at the level where it is ambiguous that a person has even uttered
the word “art” — for at some stage the slurred sequence of sound had to
have historically come from sounds that were decidedly of another language
than English, one of its ancestors. Even the word ‘art’ is not immortal, so
I am reluctant to believe that its denotation could be.

But apart from the data of what is called art, we are asking the question
of what should be called art. This ‘should’ — in my most polemic moods,
I want to say that it’s a complete ghost, that it’s not real at all, that there
is no ‘should’ to it. But I have to admit that one can get shoulds out of it
if one tries.

For example, there is a argument that says this objection could be ap-
plied to every word in the language, leaving us with no tools for conceptual
discrimination at all! This confuses the claim that ‘art’ should not mean
any particular thing with the straw-man that there is no reason that we
should have words to map out those things that we call ‘art’. I do find it
useful to be able to speak about people attempting to

• reproduce features of the visual appearance of objects in other forms

• evoke emotions

• express ideas

• create visual styles

• violate assumptions

and so forth. And indeed I think these are all interesting activities: but I
don’t feel worried about which of them is most especially associated with
a word whose meaning is intentionally undefined.

It’s like mathematicians arguing about whether groups are really com-
mutative or not. The answer is, there are groups that are, and groups that
aren’t.

The notion of ‘useful’ is pretty nebulous, though. I remember disqual-
ifying uses of it by Donna in reference to personality testing. The thing
is that I would like to measure whether one classification scheme is more
useful than another. It seems certain that having language is more useful

6

than not, but it seems devilishly difficult — and politically incorrect — to
make any comparisons past that point.

On that point I maintain my belief that all garden-variety human lan-
guages are in practice essentially equipotent, but in principle there are such
things as better- and worse-adapted languages for various communication
and cognition tasks. Memorizing words and facts about words (i.e. their
‘definitions’ as patterns of use) is not essentially different from memorizing
declarative facts, in that both can help solve real problems, and that some
such solutions are more effective than others.

Back to thinking about mathematical formalization: what would I ad-
vance as a minimalist notion of proof representation, to maximize clarity of
definition, if not of encoding? My first thought is to say: Give me a binary
string B and a finite set S of rewrite rules B1 7→ B2. I have a certain sort
of strong understanding about the meaning of the question, “can you get
to B′ from B by using S?” Which is to say, I know what I would accept
as an affirmative witness to such a question. I could step-by-step examine
each transition, make sure that the antecedent of that step differs from its
conclusion only in one segment, and that that segment goes from B1 to B2

for some element of S.
However: this setup depends on the integrity of the symbols themselves,

and even my understanding of the word “two”. If my interlocutor can tell
the difference between red zeroes and green zeroes and I am colorblind, I
might accept some proofs that she would reject. Conversely, if she can’t
tell the difference between the symbols at all, she will interpret everything
in unary, and accept more proofs than I do.

Furthermore, the ‘adequacy proofs’ for this system are hard and un-
reliable. There is just as much opportunity for screwing up the encoding
as there is the claim of some theorem. But to speak of adequacy proofs
this way presumes there is some external notion of ‘what the mathemati-
cian really means’, which I find suspect. Here we come back to the idea
that maybe some languages are simply internally better work-places, more
effective loci in which to develop ideas in the first place.

The meaning of a word is just as disconnected from its sound as the
value of a dollar is from its physical representation — although it seems
to have inertia, anyway. The difference is that money has only one di-
mension to float in — inflation and deflation — while words float in a
tremendously high-dimensional space. Though maybe it’s locally not so
high-dimensional?

7

A Story:
After his wife died, her body received by the moist summer earth, Beu

Aiko fell in love with the moon. The moon brought him a gift: it was a
small cup, which fit easily in his hand. It felt warm there as he held it,
and he saw it was full of light the moon had collected and given to him.
She told him to drink it, but he refused, smiling. He put the cup on a
shelf in his home, near his oldest books, which he had inherited from his
father’s mother. The next day, she brought him a larger cup, just as full,
and told him to drink it, but he refused again. He hid the cup behind his
bed, behind the wool and linen blankets. The cups were made of fired clay,
and each bigger than the last: by the seventh day, they had become too
large for him to hold with one hand. By the fourteenth day, he struggled
to lift them off the ground.

The moon became angry at Beu Aiko, and ceased to love him, but he
smiled all the while she screamed at him, and threw at him grass and mud.
She left him for several days. When she returned, there appeared another
gift from her, next to the house of Beu Aiko. It was a lake, full of the
same moonlight she had offered to him before, ripples and whorls writhing
almost silently across its surface with each passing breeze.

Beu Aiko ran eagerly to the shore of the lake and splashed toward its
center, and there he drowned.

2007.3.24
The feeling of a heavy person sitting next to you on a bus.
The delicate porousness of a banana peel, viewed edge-on; the snap of

it as you break the stem.

A culture that has a notion of gend, a quality that competes in the same
niche as truth. Some people abandon truth as a criterion to be sought out
in things and theories and beliefs; they maximize gend instead. Gend is an
internal quality, and is a notion of internal conformity to principles, just
as truth is external. Just because it is internal does not mean it is not
amenable to direct observation. But just because it is amenable to direct
observation does not mean that observing it is easy without training —
just as artists and writers require training to see with precision the truths
of the external world.

A breakaway sect that views truth with just as much indifference, but
seeks to minimize gend instead of maximizing it.

I remember Tobin Coziahr complaining about people who say “I think”
and “In my opinion” a lot in their writing, the idea being: you are writing

8

what you write — of course you think so, and of course it is your opin-
ion. I think the truth is that these are perfectly serviceable markers of
reduced confidence, but a person must choose judiciously how often to use
them. Used almost incessantly, they theoretically lend infinite confidence
to sentences that lack them.
2007.3.25

Ronald Brown, “From Groups to Groupoids”: Things get simpler with
the Siefert-Van Kampen Theorem if you use groupoids instead of groups.
I think it basically claims that π1 preserves pushouts or something.

2007.3.26
Define A 7→ B, pronounced ‘B is a finite version of A’ by

A⇒ 1 & A & (A⊗A) & · · · & (A⊗ · · · ⊗A)

p⇒ A

p 7→ A

A 7→ A′ B 7→ B′ A′ ? B′ ⇒ C
(? ∈ {→,∧,∨, etc.})

A ? B 7→ C

Conjecture Γ ` A in ordinary propositional logic iff there exist finite
versions of Γ and A such that Γ ` A in linear logic, translating ∧ freely to
⊗ or &.

It seems like I ought to be able to generalize tiling 2n-gons with rhom-
buses to something like tiling arbitrary polygons with other arbitrary poly-
gons as long as the total collection of absolute orientations of edges is ‘ra-
tional’ in a suitable sense.

Jared Diamond talk: ugh. Dry, uninteresting, repetitive, bland.

2007.3.27

K. Culik II, “An aperiodic set of 13 Wang tiles” (1996) in Discrete
Mathematics 160, pp. 245–251.

Nice, clear paper. Idea: represent a positive real number r ∈ R+ as a
‘balanced sequence’, a map f : Z→ N via

f(n) = b(n+ 1)rc − bnrc

Given this, it is possible to make FSMs decorated with input and output
symbols along the transitions that multiply balanced sequences by rational

9

numbers. Executions of these FSMs (which are bi-infinite) form rows of a
Wang tiling. The whole tiling consists of an iterated sequence of executions.
The machines he use multiply by 3 and 1/2, and so no sequencing of them
can ever lead to the identity, yielding a non-periodic set of Wang tiles.

Robert Berger, “The Undecidability of the Domino Problem” (1966) in
Memoirs of the AMS 66.

The original settling of the decidability question of Wang tiling.
The argument that Wang and Moore made, contingent on Wang’s (re-

futed) conjecture that any tile set that admits a tiling admits a periodic
one, is peculiar. It works like this:

Suppose the plane is not periodically tilable. By conjecture, it is not
tilable. Hence there is some finite region (wlog a square) that cannot be
tiled.

Suppose the plane is periodically tilable, say with frequency (a, b). Then
there is an (ab, ab)-sized torus that serves as a unit cell for tiling the plane.

Start two threads in parallel, checking for each N -square whether it can
be tiled as a torus and whether it can not be tiled at all. We are guaranteed
evidence either way.

Peter Cho talk: Pretty decent. I guess I confused him with another
dynamic typography guy?

2007.3.28
Notes from LF meeting. Topic: Unification

[∆;]Γ ` U =̇ U ′[: V]

The ∆ is implicit in the implementation, represented by ref cells. The
V is also implicit; the Γ is not. We’re able to maintain Γ because λs have
type labels. Frank says it would have been better to be more bidirectional
and keep V , but it’s hard to change now.

We would like to maintain the invariants

Γ ` U : V

Γ ` U ′ : V

but actually these will fail, because HOU is undecidable. We actually keep
track of constraints on the side, and the invariant is, for every substitu-
tion that satisfies the constraints, U and U ′ have the same type after the
substitution is applied.

Most the cases are easy, if we mumble about the order of composition
of effects or substitutions or what-have-you. Like for instance,

Γ ` U =̇ U ′ : type Γ, U ` V = V ′ : type

Γ ` ΠU.V =̇ ΠU ′.V ′ : type

10

The hard/interesting case is flex on the left. Faced with Γ ` X[σ] =̇
U : V , with Γ ` U : V and Γ ` σ : Ψ and X :: (Ψ ` V ′) and Γ ` V ′[σ] =
V : type, then we want to compute a partial inverse substitution σ−1 and
apply it to U . This is the assignment to X:

X ← U [σ−1]

Example:

u : a, v : a,w : a ` X0 v u =̇ f u (f w c) : a

This should fail right away because X0 has no way talking about w. After
elaboration and lowering we get

X :: ([u :]a, [v :]a ` a) ∈ ∆

and the problem is

a, a, a ` X[3.2. ↑3] =̇ f · (3; f · (1; c))

Note that the spine gets reversed during lowering! The inverse of [3.2. ↑3]
is [.2.1. ↑2]. This breaks on the 1. The one-sided substitution inverse is
just matrix transpose, isn’t it?

A =

0 0 1 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 1 0 · · ·
0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .

3.
2.
↑3

...

gets mapped to

B =

0 0 0 0 0 · · ·
0 1 0 0 0 · · ·
1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

.
2.
1.
↑2

...

and AB = I, (think of matrices acting on row vectors on their left) though
BA 6= I.

11

Now if we find during application of an inverse substitution σ−1 to an
evar closure like Y [M.N. ↑n] that σ−1N doesn’t exist, we need to prune Y .

Now, consider non-pattern equations. We only ever postpone equations
like X[σ] = U , so these are bundled up with the evar X itself. Pro: when-
ever we instantiate an X, we know what constraints are associated with
it! Con: when unification returns ‘true’, it doesn’t necessarily mean that
unification worked — we have to dig through the term to find the variables
that might still have constraints left.

Lie: if constraints are left, they cannot be solved by pattern unification.
But sometimes things cannot be solved by pattern reconstruction, and
nonetheless their constraints are eliminated, specifically in the case of like
X M =̇ X M — there is a special hack to solve this.

The difficult part is this: suppose at the source level we have

X u =̇ f u (Y (Y ′ u w))

Do we prune the second argument of Y ′, or the first argument of Y ? If we
just suspend, we lose the information that X starts with f . So what we do
is

X ← λu.f u (Z u)

Z u =̇ Y (Y ′ u w)

But what type does Z have? On a bad day, its type could involve X, even.
Here is where we would have loved to keep track of V .

2007.3.29
A game where you have to arrange an org chart for a company to max-

imize something. Imagine there are hidden variables like “personality” of
employees such that any collection of tree-siblings that contains an opposing
pair results in ‘conflict’ and they don’t get any work done.

‘Idea’ tokens (maybe good ideas, maybe bad ideas?) are emitted from
the leaves and filter up through the hierarchy. Some people are good idea
generators, some people are good idea filters.

‘Managers’ may reject good ideas, reject bad ideas, turn bad ideas into
good ideas.

2007.3.30
Reading a paper by Thomas Erhard and Laurent Regnier, titled ‘The

Differential Lambda-Calculus’ (2003)
Since they deal with R-linear combinations of terms, there is a term 0

that is like Girard’s daemon. The basic idea I think is that if we had ⊗
pairs, then

∂

∂x
(M ⊗N) · u = (

∂M

∂x
· u)⊗N +M ⊗ (

∂N

∂x
· u)

12

Their typing rules say coalescingly that

Γ ` s : A1 → · · · → An → B Γ ` u : Ai

Γ ` Dis · u : A1 → · · · → An → B

But I would have expected maybe something like

Γ ` s : A→ B

Γ ` Ds : A→ A(B

In the other extreme, making things as judgmental as possible, I might have
expected

Γ, x : A;∆1 ` s : B Γ; · ` t : A Γ;∆2 ` u : A

Γ;∆1,∆2 ` (Dx.s) · (t, u) : B

where ∆ is a collection of linear hypotheses. Is this rule conservative? Can
I prove (A→ B)→ (A→ A(B) ordinarily?

XXX

A `!A B ` B

A→ B,A;A ` B
No! I would need something like A⊗!A `!A. Does this affect my LLF

encoding? Are there terms of type (A→ B)→ (A→ A(B)?

f : A→ B, x : A,α : w, y : A@α ` f y : B[α]

No! f would only accept an argument at ε.

2007.3.31
Regarding the translation from the refinement calculus to proof irrel-

evance: Do you really need to allow dependently-sorted ‘classifiers’ when
declaring refinement sorts of type families?

2007.4.1
So each base refinement s :: L ⊆ K translates to a predicate on things

of type a ·S for some S. We need to kind of code up Σs, but also to code up
proof irrelevance on the right. The thing we ought to be able to do is just
yield proofs of the type ‘for real’, and only ever require them irrelevantly.

2007.4.2
Reading http://worrydream.com/MagicInk/.

Command-line systems are criticized for forcing the user to
learn the computer’s language. Modern GUIs may be easier

13

to use, but they are not much different in that respect. The
GUI language consists of a grammar of menus, buttons, and
checkboxes, each labeled with a vocabulary of generally decon-
textualized short phrases. The user ‘speaks’ by selecting from
a tiny, discrete vocabulary within an entirely fixed grammatical
structurea bizarre pidgin unlike any human language, unexpres-
sive and unnatural.

This is a peculiar perspective: why is the set of interactions with a
computer considered a horribly broken, cobbled ‘language’, and the set of
interactions with other machines (say, a car) considered just that, a set of
ways that one can interact with it?

Tangible Functional Programming, Conal Elliott, is pretty interesting.

2007.4.3
More from “Magic Ink”:

Prominent usability pundits have claimed that the public is
becoming more discriminating, but since this claim underlies
their consultancies’ sales pitch, it is far from an unbiased ob-
servation. I see the oppositeas technology races ahead, people
are tolerating increasingly worse design just to use it. The most
beautifully-designed DVD player will go unsold if the competi-
tion costs the same and has S-Video output, or plays MP3s from
memory sticks. Good design makes people happy, but feature
count makes people pay.

This sounds like a unit confusion similar to nature versus nurture. Pretti-
ness of design and number of features are basically incommensurable things;
when we ask a question like “if I pump $X into the design department, or
into the feature-making department, will I get better results?” we have
asked something meaningful, but we are no nearer to an answer to that
question if we just sit and navel-gaze about whether features or design are
intrinsically more important.

Some eariler thoughts: It is important to keep in mind that this guy’s
claims are not likely valid for software that is not so-called ‘information
software’. Some of the difficulties of designing this sort of software arise
because our expectations are higher for software — we want to believe that
adding context or interactivity or something actually makes the system
better than paper. We could simply make with software what we made with
hand, on paper, and that would be no more difficult to achieve than the
results we achieved by hand, on paper. But it would also be no better.

14

I like the attention to what questions the user probably wants answered
— but his guesses are not always the same as mine! In his Amazon redesign,
the price of a book is still rather small, but it’s a piece of information that
is still rather important to me.

The unobtrusive hyper-link anchor sharps are fantastic. Mostly invisi-
ble, quiet and gray when they appear, appearing whenever you mouse-over
the paragraph not just the region where the sharp itself is, thereby indicat-
ing what it’s attached to, and having a text suggestive of their purpose if
you know HTML. The only problems I have detected are that the sharp
disappears between the paragraph and the sharp, and that the paragraph
numbers seem to skip around occasionally.

In paragraph 10 he gets pretty ballsy asserting that all HCI textbooks
on the market are crap. Myself I feel pretty reluctant when it comes to
related work sections saying definitively that nobody has successfully done
a particular thing.

Paragraph 18 contains (at least the beginnings of) a pleasingly enlight-
ened understanding of the continuum of data and programs — but I don’t
agree with p19 necessarily.

At about paragraph 265 now.

Reading William’s notes on LF plus refinements. Quite pretty. The
main question that occurs to me is that in the specification of atomic re-
finements of type families, why is it that Π-elimination takes an argument,
and &-elimination produces no term part?

2007.4.4
Ok, so some notes on proof irrelevance.

• Example of composite numbers.

• Example of strict lambda terms.

We have a failure to express the types we really mean. It’s true that
there are workarounds, but so too there are workarounds for a system that
doesn’t have, say, higher-order abstract syntax. So let’s explore a type-
theory that lets us make more intrinsic encodings of these sort of phenom-
ena.

What we want to do is make some arrows and applications ‘proof-
irrelevant’ like

comp/ : ΠN : nat. is-comp N -:> comp.
so that these two guys are in fact considered equal:
six-comp1 : comp = comp/ six o (is-comp/ two-by-three).
six-comp2 : comp = comp/ six o (is-comp/ three-by-two).

15

So let’s think intuitively about what this function type is supposed to
mean, before sketching out the formalism.

A →÷ B is a function that requires evidence that A is inhabited, but
the B it produces is guaranteed not to depend on which A is provided.
This is the contract we expect to be satisfied when we declare constants
with irrelevant function types. We’ll cook up the notion of equivalence of
canonical forms so that these are really equal.

But let’s make sure this type live in our theory as a first-class function
type: we’ll be able to write our own irrelevant lambda expressions, too.
This means we’ll have a new sort of hypothetical judgment x ÷ A. It is
an assumption that A is inhabited, but we are prohibited, when we build
terms from x, of depending on the identity of x.

And so we’ll need a new substitution principle for these hypotheses.
What terms M can we safely substitute for x÷ A? Since x exists in some
environment where its ‘client’ promises not to care about its identity, we
can be more reckless in building a term to substitute for x — in particular
we can use irrelevant hypotheses in building up M . Let Γ⊕ mean Γ with all
÷ switched to :. Then the new substitution principle is if Γ, x÷A ` N : B
and Γ⊕ `M : A, then Γ ` [M/x]N : B.

Ok, formalism.
Syntax

Normal Terms M ::= λx.M | R
Atomic Terms R ::= R N | R ◦N
Atomic Types P ::= a | P M

Types A ::= P | Πx ? A.B

Equality

R ≡ R′

R ◦N ≡ R′ ◦N ′

R ≡ R′ N ≡ N ′

R N ≡ R′ N ′

Judgments ...
Typing

Γ, x ? A `M : B

Γ ` λx.M : Π ? A.B : type

Γ `M : Πx:A.B Γ ` N : A

Γ `MN : [N/x]B

Γ `M : Πx÷A.B Γ⊕ ` N : A

Γ `M ◦N : [N/x]B

16

ΓA : type Γ, x ? A ` B : type

Γ ` Πx ? A.B : type

2007.4.5
Sean talked about decision procedures for the first-order theory of reals.

Cohen’s algorithm works by building up sign matrices, which are somehow
computed recursively in terms of the derivatives of polynomials. It’s some-
what amazing to me that everything reduces to polynomials in the first
place.

2007.4.6

Il n’y a qu’un cas où une œuvre ne vaut rien: c’est quand
elle correspond aux intentions de l’auteur.

(In only one case is a work worth nothing: when it corre-
sponds to the intentions of the author.)

J. L. Borges, as quoted in Esthétique de L’Oulipo

On préfèra dans cet essai adopter une dé�nition pragma-
tique, empruntée à Umberto Eco. Elle a l'avantage de clarté et
de la simplicité: � La littérature, c'est la littérature. � L'idée
semble tautologique, elle ne l'est pas tant que ça. Se plaçant
résolument du côté du lecteur (après tout, il n'est pas de lit-
térature sans lecteur), évoquant la � tradition littéraire �, Eco
y place l'ensemble des textes � produits à des �ns non pratiques
(comme le serait tenir des registres, citer des lois et des for-
mules scienti�ques, enregistrer des procès-verbaux de séances ou
fournir des horaires de chemins defer) mais plutôt gratia sui, par
amour d'eux-mêmes � et que l'on lit pour le plaisir, l'élévation
des connaissances, voire comme pass-temps, sans que personne
ne nous y contraigne (exception fait des obligations scolaires) �.

Que voilà une vision latine et réjouissante, qui s'oppose
hardiment au pragmatisme commercial de certain libraries
anglo-saxonnes! Celles-ci divisent la littérature en deux rayons
distinct: Fiction, pour ce qui est jugé divertissant, Litterature
pour le reste. Les lecteurs ne risquent pas ainsi l'erreur tragique
d'acheter un Calvino ou un Borges pour se distraire.

Esthétique de L'Oulipo p.45

2007.4.7
Still having a hard time breaking through some invisible conceptual

barrier thinking about the foundations of mathematics.

17

It has some relationship to a lesson I am trying to take away from
Wittgenstein: the most general lesson is that there is such a thing as a bad
question. The more speci�c versions involve certain forms of questions. A
common one is �What is X, really?� It's somehow the most anti-E-prime
thing you could ask.

Here I'm reminded of positivism: because I want to say that in order to
make a question de�nitely a good question, you should have some notion of
what counts as evidence for or against it ahead of time. This is some kind
of condition on de�niteness of the question.

There's a background assumption about words that they may be �spe-
ci�c� or �vague�, and that something like monosemy actually exists. I am
reluctant to accept this. I think words' denotations are best thought of as
probabilistic smears of situations in which they are used, and so there is no
such thing as a word that means one thing, because there is no good notion
atoms in this space of contexts � a word that is only usable in precisely
one situation seems like a useless corner case.

However, denotations can be more or less crisp at their edges, and this
something about is what I mean by de�niteness. There is the (apparently!)
separate issue of reliability in transmitting such a concept to another person,
but I think there's something deeply similar about transmitting a concept
to another person to transmitting it to your own future self � I need to
go back and look at Wittgenstein on private languages, because I think the
knot might get untied there.

2007.4.8
Sean McLaughlin explained to me more about resistor networks. They

seem pretty neat. The underlying connection between them and random
walks is that they both satisfy what I feel tempted to call a `balance' con-
straint, even though I am not sure it is the same thing as the notion of
`detailed balance' I remember from the Metropolis algorithm. In the un-
labelled undirected graph case it's just that every (non-boundary) vertex's
value is the average of its neighbors. That this follows from Kircho�'s and
Ohm's laws in the case of voltages is pretty easy to see, and in the random
walk case it's about as trivial.

I made an error, though, thinking that the resistance of an edge should
correspond to the number of parallel edges that should represent it in an
unlabelled (but multi-edge-having) graph: obviously it should be a series
of consecutive edges to model a high resistance.

2007.4.9
Reading the current episode of Baez's �Weekly Finds�, week249.

Lemma 0.1 Suppose G acts transitively on X. Pick x ∈ X. There is a

18

bijection f : X ∼= G/Stab(x) given by f(gx) = [g]∼.

Proof First of all, having y ∈ X uniquely determines a g such that gx = y,
and we have existence of g because the action is transitive. The map is
obviously surjective, because for any [g]∼, the element gx ∈ X maps to it.
Now to show injectivity. Suppose we have [g]∼ = [h]∼, that is, f(gx) =
f(hx). We're to show gx = hx. Because g ∼ h, there is k ∈ Stab(x) such
that gk = h. Thus hx = gkx = gx.

2007.4.10
A `syzygy' is a kind of 2-cellish relation between relations?

2007.4.11
Is it really true that any well-typed set of clauses for a re�nement of

a type family that happens to be, say, an intersection can adequately be
erased to clauses for the maximal re�nment of it?

2007.4.12
Can uni�cation be done the hybrid system in a well-moded way involv-

ing worlds?

2007.4.13

• One reason why moral judgments are di�cult. In principle it is easy
to persuade well-meaning people to do arbitrarily atrocious things:
you need only make them not believe that they are doing so. People
play video games and honestly have no qualms about `killing' their
opponents, because they equally honestly believe that they are not
causing any actual death or (signi�cant) su�ering.

I don't believe that I am harming a rock when I kick it. Indeed, if
I were to believe that a rock had moral rights, I would have to de-
termine which things the rock `wanted' ! Our recognition of things
around us as having agency and deserving protection goes hand in
hand with our beliefs about which states they want to be in, or oth-
erwise normatively should be in, on what counts as external evidence
of su�ering or happiness and so on.

• There is nothing that I have `always' done. There are things that
perhaps I have done each of the �nite times I made a certain choice,
but I should not underestimate the �niteness of this sample. I have
not always liked or always disliked anything � I have done so over
a certain period. However, there are things that I have never done,
meaning that without quanti�cational care, always and never are not
complementary.

19

• Here is a certain facet of the idea of trust: I might feel very comfort-
able sharing my arbitrariest thoughts with another person, mention-
ing them to her with the same candor as I might ruminate by myself
� except, clearly, there are some thoughts that meet with resistance
even in the space of my own brain. In these situations, I am acting
less than whole, being reluctant to loose a confession from one part
of my self to my inner critic.

But, really, what cause do I have to be ashamed of myself, apart from
the pragmatic end of antireinforcing bad behavior? To move forward
I have to achieve some level of dispassion, and draw some circle within
which I can assess what has happened to me and what I have done
without internal censorship.

2007.4.14
Read some of Kirby, Dowman and Gri�ths's �Innateness and culture in

the evolution of language�. I am disappointed that their model depends on
a mapping from `meanings' to symbols, and not just on the behavioral use
of symbols.

2007.4.15
It is amazing how the tiniest quantities of silence can have linguistic

meaning � that a statement comes slightly later than expected, makes it
seem dishonest in the right context. Bounded rationality in a linguistic set-
ting should account for this, that communicating agents know that evidence
of the other agents using extra computational resources means something.

2007.4.16
Consider the problem of uni�cation with labels. The basic query is

∆; Γ `M =̇ N ⇐ A[p]

But this will kick out residual constraints of basically the same form. The
role of the labels is to ensure compatibility with the interpretation of linear
logic. I want to be able to detect which clauses can actually generate terms
that are not only well-typed, but well-labelled.

∆; Γ, x : A `M =̇ N ⇐ B[p]

∆; Γ ` λx.M =̇ λx.N ⇐ Πx:A.B[p]

X :: (Ψ ` B[q]) ∈ ∆ ∆; Γ ` σ : Ψ

∆; Γ ` X[σ] =̇ M ⇐ A[p]

20

2007.4.17
Here is the units problem with the nature vs. nurture argument. The

most apt clari�cation I can think of right now of the idea �nature� is the
space of possible genomes an organism might have, together with a metric
of similarity between them. Similarly, �nurture� might as well refer to the
possible environments an organism might be born into and live in. The
question �which is a more important determiner of some observable trait,
nature or nurture?� then translates into a question something like �is the
derivative of this function bigger in one variable, or another?� but the
problem with asking this question is that the two variables concerned have
di�erent units. I do not know a priori whether one base-pair change `counts
as' the same as, less than, or more di�erent than being raised by a family
that makes, say, $10k more per year.

And this objection is only made after assuming that these spaces are
easily quanti�able! It is not at all clear that every base pair is equally
signi�cant, and the space of di�erent environments does not in fact present
itself as any clear one-dimensional quantitatively indexed structure.

Words are pagan gods, and sentences their mythology: we engage in
syncretism every time we translate. When we say English word is French
mot, we do the same thing as when we say Greek Zeus is Roman Jupiter.

Habits are important. Learning is slow, but eventually e�ective. Writing
things down is importnat.

2007.4.18
In the proposed LF module system, it is uncertain whether one should

allow mixing-in of ELF-like constructs like %solve. On the one hand, they
seem useful to allow logic programming over abstract signatures, and yet
they are `e�ectful' in that they might not terminate, and are peculiarly
`early-binding' in contrast to the intended behavior of the other metatheory
checks.

2007.4.19
What is important is not how data is represented, but what interface it

satis�es.
What interface is provided by weak n-categories? In a set, I can ask

whether elements are equal. In a category, I can ask for the hom-set that
exists between them. This gives me a new set of answers; the hom-set could
be empty, or it could be populated (but not contain an isomorphism), or it
could contain an isomorphism.

21

Is some doctrine of ω-groupoids with structure enough to describe ω-
categories?

2007.4.20
The problem of words and rules that Wittgenstein raises and which

Kripke focusses on is quite di�cult to even nail down as a problem. I want
to ask, what is the di�erence between rote memorization and rule learning?
I must instead apparently ask, is there a discernible di�erence between rote
memorization and rule learning? For even to be able to respond with the
same response at identical stimuli, I must have some notion of equality of
responses and stimuli. This is unavoidable, for I can conceive of a notion
of equality that is so discriminatory as to be useless, one that says any two
responses (or stimuli) at di�erent times are necessarily disequal. One must
have a notion of `transport' of behaviors across time at a minimum (and
very probably across agents, and across space) to make anything sensible
come out of a theory.

2007.4.21
Dependent types seem to be just as much a notion of re�nement as

anything else: the intrinsic structure of LF terms, su�cient to compare
them for equality and carry out substitution, seems totally determined by
positing one base type, and the type constructor →. This is not, the case,
however, for proof irrelevant terms or singleton types. In the case of proof
irrelevance, instead of speaking of type-directed equality, I just demand
that the syntax re�ect the types in certain ways: irrelevant arrow is treated
as a genuinely di�erent type, because it has di�erent equality behavior.

But does this refute my earlier claim that I never need to think of
dependent types as anything but re�nements? I think it might. For if an
irrelevant arrow allows any term at type o to occupy its argument, and
considers all of them equal, then isn't a term well-typed provided there is
an inhabitant of o (which there very well might be, in context) even if there
is not a term of the appropriate re�nement? (since I can't equationally
distinguish them?)

No, I don't think this refutational argument really works. I'm treating
irrelevant equality as a supervenient equivalence relation anyhow, so that
I can formulate a type-checking algorithm that can inspect irrelevant ar-
guments in order to be decidable. Nonetheless the type structure requires
the terms to be at least marked with irrelevant applications so that this
de�nition of irrelevant equality can get a foothold.

What about singleton types? Do they have terms with nice canonical
forms? Or is the point that interpreting a term at di�erent types gives
di�erent supervenient equivalence relations on terms, and canonical forms
remain the way they are?

22

I perceive some duality between re�nements as `after-the-fact' superve-
nient subsets of existing types (think: equalizers) and proof irrelevance and
singleton types as `after-the-fact' supervenient quotients of existing types
(think: coequalizers).

Here is a recurring idea: one should not ask what a word means, but
what meanings are available, and which observable things happen.

Worse: �What does art mean?� Better: �People have made images using
paint, and pencils, and computers. It is a hard but learnable skill to make
these images in various styles. There are mappings from the human visual
system's inputs, and to such images, such that it forms a sort of one-sided
inverse.

People have made objects by sculpting clay and marble. People have
made objects by gluing together objects, welding, soldering, arrangement.

Some of the above creations seem pleasing in various ways to various
people: they cause calm, laughter, excitement, curiosity.�

2007.4.22
1000 Blank White Cards is a very `�at' game. Cards occasionally in-

teract with one another, but rather rarely. What sort of cultural or game-
regulatory phenomena would change this to make it `deeper'?

2007.4.23

Can HOU be done e�ectively without maintaining types (or labels) for
anything but uni�cation variables? I think it would only be during actual
inversion of pattern substitutions that one would need to schlep around
types.

2007.4.24
Nicola Gambino had a talk about the connection between identity types

in Martin-Löf type theory on the one hand, and the theory of weak n-
categories on the other.

Apparently one can interpret a type theory into the 2-category Grp of
groupoids, functors, and natural transformations to refute the admissibility
of the uniqueness of identity proofs (UIP) rule

Γ `M,N : A Γ ` P,Q : IdA(M,N)

Γ ` new(M,N,P,Q) : IdIdA
(P,Q)

and maybe also groupoid semantics can be used to refute the admissi-
bility of the `re�ection' rule

Γ ` P : IdA(M,N)

Γ `M = N : A

23

though I wasn't entirely clear on that point.

2007.4.25
Todd Wilson showed that it is sometimes useful to use Church encoded

types as indices for other types; you can get �nite types that a more full
range of functions.

2007.4.26
Hypocrisy is fundamental, and the golden rule a social construction,

which can only arise after we recognize some subsets of the universe as not
I but morally equivalent to I.

2007.4.27
Listening to a talk by Benjamin Pierce.

get : C -> A
put : A -> C -> C

put (get c) c = c
get (put a c) = a

He says if you add an extra rule that says two puts in sequence are
equivalent to the second, then in fact C must be isomorphic to some product
A×B.

Well-behavedness of get and put with respect to list data can be phrased
in terms of equivariance up to some equivalence relation, such as reorder-
ability of lines.

2007.4.28
I am unsure whether this termination problem is related to the one

Frank mentioned.
Start with the uni�cation equations

(X[1] =̇ c · Y [Z[2]]) ∧ (Y [1] =̇ X[Z[2]])

in the context Γ = o, o. The types of the existential variables are all o ` o,
and the type of c is o→ o.

Focus on the �rst conjunct. Though we know at least one of Y , Z
projects out its argument, we don't know which of them does. However,
we do know X's instantiation must start with a c, though. So make up a
new variable X ′ : o ` o, instantiate X ← c ·X ′[id], and add the constraint
X ′[1] =̇ Y [Z[2]] to obtain

(X ′[1] =̇ Y [Z[2]]) ∧ (Y [1] =̇ c ·X ′[Z[2]])

24

which is just an α-variant of the original problem.

2007.4.29
Thinking about inverse substitution.
Judgment M [σ]−1 = N .

n[n.σ]−1 = 1

n[σ]−1 = i
n 6= m

n[m.σ]−1 = i + 1

n[σ]−1 = n′ ρ[σ]−1 = ρ′

(n.ρ)[σ]−1 = n′.ρ′

↑m+n[↑n]−1 = ↑m

↑n[σ]−1 = ↑i

↑n[m.σ]−1 = ↑i+1

This seems to be unable to compute id[1.↑]−1 however. Is this actually a
problem?

2007.4.30
Sapir-Whorf says the things we can think are in part determined by what

linguistic structure is available � but this seems almost like a tautology
if we consider both `the things we can think' and `what is available' to be
essentially linguistic (and ultimately behavioral) habits.

I appreciate more and more how critical the idea of `following rules' is
to Wittgenstein's linguistic claims.

Doug Hofstadter started writing GEB when he was just a little older
than me.

Suppose I want to set up a variable X : A where A mentions X some-
where. Say A is forced to be · ` a · (c ·X).

o : type.
a : o -> type.
c : a M -> o.
d : {X : a M} a (c X) -> type.
- : d X X.

25

2007.5.1

At the discussion about Girard, Lafont, Taylor's book (which I keep
thinking of as essentially Girard's book, given the eccentricity of the writ-
ing) William asked some question about what essential role equality plays
in `canonical forms' LF. Somehow I had the notion that what really matters
is how many equivalence classes there are (and how they behave) not how
many elements each equivalence class is supposed to have � however, as an
implementation detail, the how `many elements' question may be of some
importance.

A simple formal question: is the category of coherence spaces equivalent
(isomorphic?) to the category of graphs?

2007.5.2
On labelled uni�cation:
I need to work out how much typing (and labelling) information needs

to be around. There are probably contextual label variables as well as
term variables. Given that term contextual variables almost certainly need
labels, they must have contexts with label variables as well. Are label
evars introduced any more freely than other variables? Does this only arise
during inversion?

I think the termination argument is that all such equations can be post-
poned until the end, but perhaps one does not want to in practice.

Is there a set of good rewrites that is nonetheless terminating? Elimi-
nating a variable is progress. The counterexample for regular LF uni�cation
shows that `almost eliminating' a variable by inferring that it must contain
some part is not actually a simpli�cation, in that it neither reduces the
variable count nor the dependency count of some variable.

William successfully convinced me that the following `semantic' notion
of subtyping is at least worth paying attention to:

(S1 ≤ S2 :: τ) := (x :: S1 ` ητ (x) :: S2)

because it makes proving completeness of some axiomatization of sub-
typing feasible. Something still sits ill with me with the idea of saying that
subtyping is `essentially about' such an identity theorem, though, since it
seems too tied up with eta expansion, a process that by itself, apart from
subtyping, has a notion of correctness. Value inclusion

Γ `M :: S1 ⇒ Γ `M :: S2

26

still feels like what I mean by subtyping.

2007.5.3
Two fundamental, recurrent con�icts: One, language does not a�ord

precision, but mathematics seems to attain it. Two, language is conven-
tional and arbitrary, and yet our success in inferring rule-following behavior
in other agents is deeply dependent on the assumption that their cognitive
machinery is like ours.

2007.5.4
Contextual modal type theory seems to be splittable into contextual

types, and modal types. Contextual types are just iterated function spaces
associated (and perhaps commuted) another way round. Likewise single-
step function spaces where the domain is a big sigma.

2007.5.5
Thinking about base-type polymorphism in LF.

Heads H ::= c | x
Base Classi�ers v ::= H · S | base

Classi�ers V ::= Πx:V1.V2 | v
Terms M ::= λx.M | H · S
Spines S ::= () | (M ;S)

H : V1 ∈ Γ ∪ Σ Γ ` S : V1 > V2

Γ ` H · S ⇒ V2

Γ, x : V1 `M ⇐ V2

Γ ` λx.M ⇐ Πx:V1.V2

Γ ` () : V > V

Γ `M ⇐ V1 Γ ` S : [M/x]V1V2 > V3

Γ ` (M ;S) : Πx:V1.V2 > V3

Γ `M ⇒ v v = v′

Γ `M ⇐ v′

Γ ` H · S ⇒ base

Γ ` H · S ⇐ ok Γ ` base⇐ ok

Γ ` V1 ⇐ ok Γ, x : V1 ` V2 ⇐ ok

Γ ` Πx:V1.V2 ⇐ ok

Conjecture If Γ ` M ⇐ V and Γ, x : V,Γ′ ` J , then Γ, σΓ′ ` σJ , where
σ = [M/x]V .

27

2007.5.6

Heads H ::= c | x
Base Classi�ers v ::= H · S | base

Classi�ers V ::= Σx:V1.V2 | Πx:V1.V2 | v
Terms M ::= 〈M,N〉 | λx.M | H · S
Spines S ::= (πi;S) | (M ;S) | ()

Γ, x : V1 `M ⇐ V2

Γ ` λx.M ⇐ Πx:V1.V2

Γ `M ⇐ V1 Γ ` S : [M/x]V1V2 > V3

Γ ` (M ;S) : Πx:V1.V2 > V3

Γ, x : V1 `M ⇐ V2

Γ ` λx.M ⇐ Πx:V1.V2

Γ ` S : V1 > V3

Γ ` (π1;S) : Σx:V1.V2 > V3

Γ ` R⇒ Σx:V1.V2

Γ ` π2R⇒ [π1R/x]V1V2

H : V1 ∈ Γ ∪ Σ Γ ` S : V1 > V2

Γ ` H · S ⇒ V2

Γ ` () : V > V

Γ `M ⇒ v v = v′

Γ `M ⇐ v′

Γ ` H · S ⇒ base

Γ ` H · S ⇐ ok Γ ` base⇐ ok

Γ ` V1 ⇐ ok Γ, x : V1 ` V2 ⇐ ok

Γ ` Πx:V1.V2 ⇐ ok

Here's a try not in spine form:

Base Classi�ers v ::= base | R
Classi�ers V ::= Πx:V1.V2 | v

Terms M ::= λx.M | R
Atomic R ::= x | R M

Well-Formedness (Γ ` V ⇐ ok)

Γ ` base⇐ ok
Γ ` R⇒ base

Γ ` R⇐ ok

Γ ` V1 ⇐ ok Γ, x : V1 ` V2 ⇐ ok

Γ ` Πx:V1.V2 ⇐ ok

28

Checking (Γ `M ⇐ V)

Γ, x : V1 `M ⇐ V2

Γ ` λx.M ⇐ Πx:V1.V2

Γ ` R⇒ v′ v = v′

Γ ` R⇐ v

Synthesis (Γ ` R⇒ V)

x : V ∈ Γ

Γ ` x⇒ V

Γ ` R⇒ Πx:V1.V2 Γ `M ⇐ V1 [M1/x]V2 = V ′2

Γ ` R M ⇒ V ′2

Substitution ([M/x]X = X ′)

[M/x]N = N ′

[M/x](λy.N) = λy.N ′

[M/x]V1 = V ′1 [M/x]V2 = V ′2

[M/x](Πy:V1.V2) = Πy:V ′1 .V
′
2

[M/x]base = base
[M/x]βR = R′

[M/x]R = R′

[M/x]aR = R′

[M/x]R = R′

Atomic Substitution ([M/x]aR = R)

[M/x]ay = y

[M/x]aR = R′ [M/x]N = N ′

[M/x]a(R N) = R′ N ′

Reduction ([M/x]βR = M)

[M/x]βx = M

[M/x]βR = λy.M ′ [M/x]N = N ′ [N ′/y]M ′ = M ′′

[M/x]β(R N) = M ′′

Conjecture There is a category whose objects are V such that ` V ⇐ ok,
and whose arrows V1 → V2 are terms M such that x : V1 `M ⇐ V2, where
composition of arrows is given by substitution.

2007.5.7
It seems that

list : base -> base.
bool : base.
true : bool.
false : bool.

29

nil : list T.
cons : T -> list T -> list T.
snoc : list T -> T -> list T -> base.
snoc/nil : snoc nil M (cons M nil).
snoc/cons : snoc (cons N S) M (cons N S’)

<- snoc S M S’.

%query 1 1 snoc (cons true (cons false nil)) true X.

a�ords an easy embedding into plain LF like

base : type.
obj : base -> type.

list : base -> base.
bool : base.
true : obj bool.
false : obj bool.

nil : obj (list T).
cons : obj T -> obj (list T) -> obj (list T).
snoc : obj (list T) -> obj T -> obj (list T) -> base.
snoc/nil : obj (snoc nil M (cons M nil)).
snoc/cons : obj (snoc (cons N S) M (cons N S’))

<- obj (snoc S M S’).

%query 1 1 obj (snoc (cons true (cons false nil)) true X).

2007.5.8
Let terms be de�ned like degenerate S-expressions by

S ::= 〈S, S〉 | •

It's not really essential what grammar is taken I think. The type S (S of
expressions with exactly one hole is evident. Say a model of computation
M is a partial function S ⇀ B. A model M is said to simulate another
model N at cost n, written M ≥n N , if there is some s : S (S of `size' n
(by which is meant a count of leaves • in s) such that

∀t.M (sˆt) = N t

Lemma 0.2 If M1 ≥a M2 and M2 ≥b M3, then M1 ≥a+b M3.

30

Proof Let s witness M1 ≥a M2, and s′ witness M2 ≥b M3. Clearly the
composition of linear functions s ◦ s′ has size a+ b by linearity. This is the
witness of M1 ≥a+b M3, for

∀t.M1 ((s ◦ s′)ˆt) = M1 (sˆ(s′ˆt)) = M2 (s′ˆt) = M3 t

2007.5.9
Looking back on 2007.3.16: This mechanism could make a �ne one-

player optimization game of a sort of Railroad Tycoon feel.
Looking back on 2007.3.30: So we have new primitives

DA,B : (A→ B)→ (A→ A(B)

plusA : A & A(A

0A : >(A

Typical rewrites would be

DA,B2(λx.(M x)ˆ(N x)) =

λx.λ̂u.plus〈(M x)ˆ((DA,B1 N) xˆu), ((DA,B1(B2 M) xˆu)ˆ(N x)〉

(Here M : A→ (B1 (B2) and N : A→ B1)

DA,B1⊗B2(λx.(M x)⊗ (N x)) =

λx.λ̂u.plus〈(M x)⊗ ((DA,B2 N) xˆu), ((DA,B1 M) xˆu)⊗ (N x)〉

DA,B1(B2(λx.λ̂v.M xˆv) =

λ̂v.DA,B2(λx.M xˆv)

DA(λx.plus〈M x,N x〉 = λx.λ̂u.plus〈DAM xˆu,DAN xˆu〉

DA(λx.x) = λx.λ̂u.u

DA(λx.M) = λx.λ̂u.0A

coA : !A(A(!A

D!A(λx.!(M x)) = λx.λ̂u.co !(M x) (M ′ xˆu)

31

coA = λ̂u, v. let!y = u inDA,!A(λx.!x) yˆv end

D!A(λx.!(M x)) = λx.λ̂u.DA,!A(λx.!x) (M x)ˆ(M ′ xˆu)

Hm, this looks like I am just using the chain rule, though.
What if I take co as primitive? Instead with type

coA : A→ A(!A

Then
DA,B = λf : (A→ B).λx : A.λ̂u : A.

let !y = coA xˆu in f y end

The tensor rule becomes

λx.λ̂u. let !y = coA xˆu in(M y)⊗ (N y)) end =

λx.λ̂u. let !y = coA xˆu in plus〈(M x)⊗ (N y), (M y)⊗ (N x)〉 end

Here is a possible source of resolution to the Wittgensteinian confusion
about rule-following: although there is no canonical notion of Kolmogorov
complexity that would enable us to apply Occam's razor to determine the
�simplest� extension of a set of function values to �nd the �most natural�
output corresponding to a new input, in fact the algorithms employed by
actual embodied brains employ related learning algorithms, and so have
correlated output hypotheses.

The probability that answers to new questions posed to a pair of agents
will coincide is no better than chance if we suppose those agents to have
arbitrary hypothesis spaces. For better or worse, our brains have an intrin-
sic notion of simplicity, one perhaps induced by the Kolmogorov measure
determined by the physical world. Di�erent brains could have a di�er-
ent measure (and probably they do!) but the signal of similarity is strong
enough amidst the noise to make practical the assumption that if another
human agrees on many data points, she will probably agree on one more.

2007.5.10
Talked to rob simmons about a probabilistic programming language.

I had a bit of a struggle understanding what would merit inclusion in a
language spec: it seems like you could get a lot of mileage out of just having
a data structure for distributions, a function for sampling from them, and
a semantics that described distributions over values.

32

2007.5.11
Suppose there is some underlying security S that takes values over a

branching set of possible worlds {ε, 0, 1, 00, 01, 10, 11}. Suppose further that
O has values Oij at the very end, somehow dependent on S's price.

Can we compute O's value at world i by replication? S will be worth
Si0 or Si1 at the next step, and O will be worth Oi0 or Oi1. We want pS

and pB so that [
Si0 1
Si1 1

] [
pS

pB

]
=
[
Oi0

Oi1

]
so [

pS

pB

]
=
[
Si0 1
Si1 1

]−1 [
Oi0

Oi1

]
And so the actual value Oi is

[Si 1]
[
pS

pB

]
= [Si 1]

[
Si0 1
Si1 1

]−1 [
Oi0

Oi1

]

= [Si 1]
1

Si0 − Si1

[
1 −1
−Si1 Si0

] [
Oi0

Oi1

]
= [Si 1]

1
Si0 − Si1

[
Oi0 −Oi1

Oi1Si0 −Oi0Si1

]
=
Si(Oi0 −Oi1) +Oi1Si0 −Oi0Si1

Si0 − Si1

Now for the case that Si0 = Si + h and Si1 = Si − h:

=
Si(Oi0 −Oi1) +Oi1(Si + h)−Oi0(Si − h)

2h

=
Oi1h+Oi0h

2h

=
Oi1 +Oi0

2
This seems really counterintuitive, because the value of a call option would
then increase without bound as the approximation time increment goes to
zero.

Wait, no: the number of possible worlds in which the stock price goes
o� to in�nity still gets dwarfed by the worlds where it doesn't. The model
simply seems to impose analysis in terms of a normal distribution. You
just want to take a dot product of some normal centered at the current

33

underlying price against the derivative's payo� function. How does one
�gure out the right variance for the normal, though?

2007.5.12
Working on revising that paper about non-type-indexed hereditary sub-

stitution. Turns out I neglected to be careful about a few basic lemmas
involving the interaction of v and ∪.
2007.5.13

The induction measure for untyped hereditary substitution associativity
is signi�cantly subtle than I expected.

2007.5.14
The stochastic integral ∫

f(t) dWt

is kind of like a dot product of f against the derivative of the Weiner process
� which is peculiar, since the latter a.c. doesn't exist.

2007.5.15

1. Labelled linear uni�cation might be best accomplished by explicit
typing constraints mixed in with equality constraints. Something like

∃X : Γ ` A[p].P

might be translated to

∃X : Γ ` A−.P ∧ (Γ ` X ⇒ A[p])

Then you might have transitions like (assuming c : B ∈ Σ)

(Γ ` R⇐ A[p]) 7→ (Γ ` R⇒ A[p])

(Γ ` c · S ⇒ A[p]) 7→ (Γ ` S : B[ε] > A[p])

(Γ ` () : A[p] > A′[p′] 7→ (A′ =̇ A) ∧ (p =̇ p′)

and
(Γ ` (M ;S) : Πx:A.B[p] > C[q]) 7→

(Γ `M ⇐ A[ε]) ∧ (Γ ` S : [M/x]AB[p] > C[q])

and
(Γ ` S : ∀α.B[p] > C[q]) 7→

∃β : (Γ ` w).(Γ ` S[[β[idΓ]/α]p] : B > C[q])

34

2. Consider the LF self-embedding

Σ += (base : type, obj : base→ type)

type 7→ base

a · S 7→ obj(a · S)

There are valid LF expressions not in the image of this translation,
such as base → base, and, if we consider LLF , things such as A (
base. I especially wonder whether the latter could make sense.

3. Perhaps the argument for mere termination of substitution should
be reworked to involve set notation to match that necessary for the
substitution associativity argument.

Do I need to be careful about contextual status during typechecking
even?

Harland & Pym.
Non-well-moded examples?

2007.5.16
Degenerate typing in spineless form:

(x ∈ R N)j
r = (x ∈ R)tp(N)→j

r ∪ (x ∈ N)n

(x ∈ x)j
r = {t} (x ∈ y)j

r = ∅

(x ∈ R)n = (x ∈ R)o
r

(x ∈ λy.N)n = (x ∈ N)n

tp(R) = o

tp(λx.N) = (x ∈ N)→ tp(N)

2007.5.17
Kaustuv was trying to explain to me a focussing system where you focus

on multiple things at once.

2007.5.18
Read some lexical semantics notes linked to by Noah Smith that Rob

Simmons told me about. Awfully frustrating to see several vaguely FOLish
schemata described as possible targets for representing propositional utter-
ances and queries, but to not have any sense of what would make any of
them more suitable than the others.

35

2007.5.19
Meeting with Kaustuv and Frank: Kaustuv described a system he was

working on that combined a hybrid-style temporal logic with linear logic, for
expressing systems that changed state consumptively but also with speci�c
delays. I found it troublingly di�cult to see how to squeeze in the notion
that a reaction will take place if it can, but there is an intuitionistically
one-sided way of looking at it that still works: a reaction can take place
with a certain timing (where all delays act like lower bounds) i� the system
proves some corresponding sequent.

Another interesting thing was the fact that expressing a temporal box
modality begged for the same trick that tom7 needed to get accessibility
facts intrinsically mobile.

2007.5.20
A thought about polymorphism in LF. With general predicative poly-

morphism, subordination is instantly shot to hell, even with relatively well-
meaning types. Like if I say

list : type -> type.
nil : list T.
cons : T -> list T -> list T.

Then I can instantiate T with any function type A → B and A is sub-
ordinate to B. Calculating subordination with base-type polymorphism
might still be di�cult � a naïve point of view might have it that every
type subordinates the coalesced type operator list, whereas a more clever
de�nition might notice that only list T and T subordinate the individual
type list T � but it seems sane, at least.

Adapting regular uni�cation to contextual uni�cation seems easy for
ACU � just split equations along the di�erent parameters, and set to ε
any variables that aren't allowed to depend � but I don't know what to
do for AU .

2007.5.21
The boolean variable approach of Harland and Pym looks a lot like the

reduction of contextual ACU uni�cation to solving equations over N (or the
�nite subset of it, 2) which makes be pessimistic about it extending well to
ordered logic.

2007.5.22
Why is ⊗ left asynchronous but not obviously a left adjoint to anything?

I suppose `half' of it is left adjoint to (, but this answer doesn't seem

36

satisfying somehow.

2007.5.23
If I wanted to imagine a collection of abstracted, modi�able names ex-

isting at the beginning of, say, a twelf �le, I would want each one of them
to be de�ned exactly one place. However, each would be used many times
in the bodies of de�nitions or declarations or what-have-you, and certainly
possibly zero times in a particular declaration, so a straightforward use of
linearity would not work.

It seems the zero-ary (but not proof-irrelevant) arrow is exactly what's
needed: a condec would take a name linearly, but take the de�ning (or
classifying) right-hand side �zeroarily�.

2007.5.24
Sitting in on a meeting with some NLP people. It strikes me again

how incredibly di�cult natural languages are to deal with � but I keep
hoping that by solving harder (more general) problems the speci�c case of
`understanding' parsed sentences might be made easer. For it's not merely
declarative things that we learn, and not merely the semantic maps in
language, but we also learn to parse, and learn to distinguish nouns from
verbs, and learn even to segment words out of continuous speech. Since all
of these tasks are learned, the linguistic behaviors we habitually engage in
are sloppy and noisy: and so they are hard for carefully engineered systems
to treat.

2007.5.25
If descending into children of a tree node preferentially chooses the most

recently accessed child, then you get a sort of local inverse relationship
between �most recent child of� and �parent of�. Clearly however, they can't
be real inverses if you account for all of the state involved, because arriving
at a child clobbers the former information of the child accessed before that.

2007.5.26
Incremental bidirectional preorder traversal is not that hard to imple-

ment, but it still feels ugly.

2007.5.27
In linear logic, have a multiconclusion calculus with the right side in-

terpreted tensorially. There is another judgment besides ordinary linear
truth which admits a superscript which signi�es tensorial `number of copies'.
Structural rules:

Γ, Am, An ` ∆

Γ, Am+n ` ∆

Γ ` Am, An,∆

Γ ` Am+n,∆

37

Γ, A ` ∆

Γ, A1 ` ∆

Γ ` A

Γ ` A1

Γ ` ∆

Γ, A0 ` ∆

Γ ` ∆

Γ ` A0,∆

Γ ` ∆ Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′ · ` ·

Connectives:
Γ ` [a/x]A

Γ ` ∀x.A

Γ, [n/x]A ` ∆

Γ,∀x.A ` ∆

Γ ` An

Γ ` ⊗nA

Γ, An ` ∆

Γ,⊗nA ` ∆

Question: how much like !A is ∀x.⊗xA? Is this the `other polarity' version
of !? (asynch-then-synch instead of synch-then-asynch)

Better yet; the only judgments (on the left or right) are An where

n ::= 1 | a | x

where a is a parameter. The judgment A1 is identi�ed with A. We write ν
for a sequence of ns. An1,...,nN means An1 , . . . , AnN . Structural rules:

Γ ` ∆ Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′ · ` ·

Γ ` ∆

Γa ` ∆a

Connectives:
Γ ` [a/x]A

Γ ` ∀x.A

Γ, [ν/x]A ` ∆

Γ,∀x.A ` ∆

Γ ` Aν ,∆

Γ ` ⊗νA,∆

Γ, Aν ` ∆

Γ,⊗νA ` ∆

Abbreviate !A ≡ ∀x.⊗xA. It seems I (correctly) still can't prove

A(B,Aa ` Ba

A(B, !A ` Ba

A(B, !A `!B

38

How about ∀x.(A⊗B) ≡ (∀x.A)⊗B? No,

∀x.(A(x)⊗B) ` (∀x.A(x))⊗B

fails.
Dang, I can't seem to prove

A `!A

Aa ` (!A)a

!A ` (!A)a

!A ` !!A

Need multiplication or something. Like:

Γ ` Aνn,∆

Γ ` (⊗νA)n,∆

Γ, Aνn ` ∆

Γ, (⊗νA)n ` ∆

Where ns are now multiplicative lists of parameters. I would then get

A ` A

Aab ` Aab

!A ` Aab

!A ` (!A)a

!A ` !!A

2007.5.28
To prove cut-freeness for the system from yesterday I seem to need to

generalize to the admissibility of something like

Γ ` Ψ Ψ 7→⊗ Ψ′ ∆,Ψ′ ` Ω

Γ,∆ ` Ω

Where 7→⊗ indicates that Ψ ` Ψ′ can be proved by introduction rules for
⊗.

The case analysis here would grind away on Γ ` Ψ until it uncovered
an instance of a synchronous `mix' rule like

Γi ` Ani
i (∀i)

Γ1, . . . ,ΓN ` An1
1 , . . . , AnN

N

to match the synchronous decomposition of ⊗ that has already taken
place on the left in ∆,Ψ′ ` Ω splitting up Ψ′.

39

What's going on with ∀s in my thesis's logic seems to be an indexed
version of the phenomenon of something like

a : o→ type

k : o

s1, s2, s3 @ a :: o→ type

c : s1 k ∧ s2 k ∧ s3 k

One might think as the limit as being something like

a : o→ type

k : o

s @ a :: Πi:w.o→ type

c : ∀i.s i k

I feel this means the right interpretation of kind-level re�nements is that

Γ ` A : type

Γ ` ref(A) : kind

And the usual
s @ a :: Πx1::S1 . . .Πxn::Sn.type

should be
s : Πx1::S1 . . .Πxn::Sn.ref(a · (x1; · · · ;xn))

But then ≤ might get undecidable depending on how you do things. I think
this interpretation makes the translation clearer, though.

2007.5.29
James Cheney made an LJ post about the combinatorics problem of

counting closed lambda terms. I wonder what the generating function is?
Say cmn is the number of lambda terms of depth at most m over n free

variables. We know:
c0n = 0

c(m+1)n = n+ cmn ∗ cmn + cm(n+1)

So f(x, y) =

∞∑
m=0

∞∑
n=0

xmyncmn =
∞∑

m=1

∞∑
n=0

(n+ c2(m−1)n + c(m−1)(n+1))xmyn

40

=

(∞∑
m=1

∞∑
n=0

nxmyn

)
+

(∞∑
m=1

∞∑
n=0

c2(m−1)nx
myn

)
+ · · ·

urg, I'll probably never get rid of that c2.
How about lambda terms of size m over n free variables?

c0n = 0

c(m+1)n = n+

(
m∑

i=0

cin ∗ c(m−i)n

)
+ cm(n+1)

Here f(x, y) =

∞∑
m=0

∞∑
n=0

xmyncmn =
∞∑

m=1

∞∑
n=0

(n+

(
m∑

i=0

cinc(m−i)n

)
+ c(m−1)(n+1))xmyn

= A+B + C

where

A =
∞∑

m=1

∞∑
n=0

nxmyn

= y

((∞∑
n=1

−nyn−1

)
+

∞∑
m=0

∞∑
n=1

nxmyn−1

)
B = ugh

2007.5.30
It seems that something like parsing can be done just in terms of dis-

played traversal of tree nodes and possible insertion of auxiliary `parenthe-
sis' nodes.

2007.5.31
I just remembered why ex actually converges:(

1 +
x

n

)n

=
n∑

i=0

(x
n

)i
(
n

i

)

=
n∑

i=0

(x
n

)i
(
n · · · (n− i+ 1)

i!

)

≤
n∑

i=0

(x
n

)i
(
ni

i!

)

41

=
n∑

i=0

xi

i!

So

lim
n→∞

(
1 +

x

n

)n

≤
∞∑

i=0

xi

i!

And we can see the latter thing converges absolutely for any x because
as soon as i > 2‖x‖ each successive term has norm less than half of the
previous one. Formally,∥∥∥∥∥

∞∑
i=0

xi

i!

∥∥∥∥∥ =

∥∥∥∥∥∥
d2‖x‖e∑

i=0

xi

i!

+
∞∑

i=d2‖x‖e

xi

i!

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
d2‖x‖e∑

i=0

xi

i!

+ d2‖x‖e
∞∑

i=0

2−i

∥∥∥∥∥∥
=

∥∥∥∥∥∥
d2‖x‖e∑

i=0

xi

i!

+ 2d2‖x‖e

∥∥∥∥∥∥ <∞
≤

n∑
i=0

(
xi

i!

)(
n · · · (n− i+ 1)

ni

)

2007.6.1
Remembering this type derivative stu�. Suppose we want to �gure out

the derivative of a µ. Say S(β) = µα.T (α, β). Compute

S′(β) = d
dβS(β)

= d
dβµα.T (α, β)

= d
dβ [µα.T (α, β)/α]T (α, β)

= d
dβT (µα.T (α, β), β)

= d
dβT (S(β), β)

= S′(β)T1(S(β), β) + T2(S(β), β)
∴ S′(β) = S′(β) ∗ T1(S(β), β) + T2(S(β), β)
S′(β) = µα.(α ∗ T1(S(β), β) + T2(S(β), β))
S′(β) = T2(S(β), β) ∗ (T1(S(β), β) list)

2007.6.2
A story, expanded from a dream:

42

It started with the elevator. I pushed eight, but it passed it on the
way up and went to nine. The doors were always locked on nine, and
the nine-button never worked. Surely it was where spare pipes were kept,
spare plugs and miscellaneous tools and control panels for the building.
But no: (as I stepped out, the two ladies beamed shame at me; duchesses
condemning a violation of etiquette) I found only a corridor with an uneven
�oor, not merely cobblestoned but of gross irregularity, rolling like seasick
waves, vertiginous and unstable yet maddeningly unmoving.

The windows were narrow, and twice my height. Through them I saw
a wall of gra�ti, a policeman conceiving a plan to erase all of it in one
afternoon. The tags' letters I thought beautiful, sunk in shadows both
painted and cast.

I found the stairs, returned to the eighth �oor. I was late for class.
Seated, doors open to my left now (noisily, ominously) shut, I found two

sheets of paper each lined on one side. A sealed envelope of instructions.
A girl next to me, (blonde, not my type) her attention only on the front of
the room. We were told it was time to open the envelopes.

A role-playing exercise. The instructions contradicted themselves fre-
quently, made us feel (they must have intended) inhabitants of an uncom-
fortable future, where cold reasoning was socially acceptable only in doses
of under 50 milligrams at a time, ask a doctor for children under twelve, get
a re�ll on your prescription. Warmth was equally discouraged. No kissing
in public, (bus-water on bus-water) no hand-holding, no short pants, �ll
both sides of both sheets of paper with writing on the provided theme, ig-
nore the instructions, ignore the instructions, ignore the theme, ignore the
provided story, do not analyze it, do not answer formal questions about it
in the argumentative structure with which you are by now familiar.

What a shallow mindfuck � I thought it cheap, juvenile. Still, I won
the game, such as it was, the winning move being, �rst, a note passed to my
right, the paper lined on one side. I confess I found their (partly) staged
fury satisfying, but not more so than the essential and internal feeling
of transgression itself. I had broken one rule, and followed another, the
latter being silent and (being, some say, our only device against mortality)
immortal. From what I heard the following day, she enjoyed it, too, but
still she never spoke directly to me during classes, or in the hallways, or
under the wide eaves (the only shaded place at midday) spreading from the
top of the ninth �oor.

It's been fourteen years. This morning, her letter arrived.

2007.6.3
Here's an attempt to encode Yablo's paradox in hybrid logic. Let X =

∀t.A@t⇔ ∀n ≥ 1.¬(A@(t+ n)). I aim to prove ¬X.

43

Suppose A@n. Then by X, we have ¬A@(n + 1). But we can also
specialize ∀n.¬(A@(t + n)) to ∀n.¬(A@(t + n + 1)), but X tells us this is
equivalent to A@(n+1). So we have a contradition. Therefore ¬A@n. But
n is arbitrary, so we have shown ∀t.¬A@t. But this is A@0. We have a
contradiction from only the assumption X.

* * * * * *
I think I can do this with the monoid domain too. Consider Γ = α :

w, f : τf , g : τg where

τf = ∀t.(A@t→ ∀p.(A@(t ∗ p ∗ α)→ C))

and
τg = ∀t.((∀p.(A@(t ∗ p ∗ α)→ C))→ A@t)

Imagine some β : w, and x : A@β. Then we can see f x : ∀p.(A@(β ∗
p ∗ α)→ C), and so also (plugging in ε for p) we get f x : A@(β ∗ α)→ C.
Now we're going to try to use g to try to make something to plug into this
function. Instantiate t = β ∗ α to get

g : (∀p.(A@(β ∗ p ∗ α ∗ α)→ C))→ A@(β ∗ α)

We should also see that

f x : ∀p.(A@(β ∗ p ∗ α ∗ α)→ C)

So g (f x) : A@(β ∗α) hence also f x (g (f x)) : C. Abstracting over what
we've build up,

λx.f x (g (f x)) : ∀β.(A@β → C) (∗)

so too
λx.f x (g (f x)) : ∀β.(A@(β ∗ α)→ C)

which �ts into g as long as we choose t = ε.

g (λx.f x (g (f x))) : A@ε

but I can plug this into x in (∗), obtaining a closed term of type C, namely

f (g (λx.f x (g (f x)))) (g (f (g (λx.f x (g (f x))))))

To η-expand this:
f

(g (λx.f x (g (λy.f x y))))

(g (λz.f (g (λx.f x (g (λy.f x y)))) z))

44

Note that f and g look kind of like app and lam. If we interpret them that
way, we get the object language term

(λx.x (λy.x y))

(λz.(λx.x (λy.x y)) z)

De�ning Ω = λx.x x, this is the usual Ω Ω up to η-expansion.

Listening to talks at a formal epistemology workshop (`FEW 2007'),
which is going on here at CMU.

The `equal epistemic competence' assumption in Tomoji Shogenji's talk
is interesting � they seem to be saying there is one (scalar!) notion of
competence, erasing the necessity to talk about some isomorphism between
the epistemic model of one agent and another. Kevin Kelly asked a question
about what becomes of an ultra-Bayesian point of view where one has
simply a huge model of other agents' cognition as parts of the world, and
in that case, there is a de�nite nontrivial isomorphism between my huge
model, and yours, for you are reduced to a ball of priors and conditional
probabilities in my model, and I am so reduced in yours.

There are some agent-indexical propositions (`my feelings are norma-
tively important', `my perceptions are not illusory') that survive transport
across these isomorphisms in an interesting and non-identical way!

* * * * * *
One thing that keeps striking me about this notion of averaging the

opinions of experts is a worry about scaling properties. There was some
axiom in Alon Altman's work on axiomatizations of ranking systems, I
think, that cloning agents shouldn't a�ect ranking.

2007.6.4
Deepak told me some neat things about ©, namely that ©A is equiva-

lent to (A(p)(p for some fresh atom p. I'm surprised this isn't in the
Frank/Evan/Kaustuv paper on JILL.

2007.6.5
Neel considered the following principle mentioning proof irrelevance,

which seems somewhat classical but weaker than Markov's principle:

(∀x.P (x) ∨ ¬P (x))⇒ [∃x.P (x)]⇒ ∃x.P (x)

2007.6.6
Have mostly succeeded in construing in�x, pre�x, post�x, and n-ary

circum�x operators (e.g. list literals) as all special cases of the same thing,
also including constructs like λ-binding, and if-then-else.

45

2007.6.7
Turns out getting a relatively uniform method for unparsing is still

tricky. I may resort to something more concrete, i.e. a more �exible macro-
ish system with output in a typical formatting combinator language.

2007.6.8
Using curses, erase is much better than clear; the latter actually re-

paints everything, whereas the former does what is expected of curses,
namely conservative repainting of only what is required.

2007.6.9
I should ask neel about his thoughts on arranging intuitionistic proofs

to have explicit comonadic εliminations and δuplications of `resources' �
I think something like that would be necessary to compile uses of zippers
into imperative functions that statefully update data in the same way as
some given functional zipper-transformer. Moreover this would make a nice
application for linear metareasoning if my thesis were closer to done.

Perhaps the right way to think about the irrelevance in world-choices
in the labelled system is to push all the irrelevance o� to the side; a well-
typed term in the labelled calculus is �rst well-typed as an ordinary term,
and then there must be a separate (irrelevant) proof that it belongs to the
suitable re�nement.

Does dependency thwart this? I can't tell right away; worlds don't
appear in the `proper' terms, so perhaps not.

2007.6.10
Maybe substitution inversion is the right locus for kicking o� label uni-

�cation also.

2007.6.11

Like, say u :: Γu ` A[p] is in ∆ somewhere. Faced with

u[σ] = M

we would try to �gure that

u←M [σ−1]

but we'd need to check that M [σ−1] uses resources p. Now Γ ` σ : Γu

for the ambient context Γ, right, so Γu ` σ−1 : Γ. Meanwhile we check that
Γ `M : B[q] and if we hit everything with σ−1 we get something like

Γu `M [σ−1] : B[σ−1][q[σ−1]]

46

2007.6.12
Imagine U is a kind of some constructors that only exist as variables,

and that elm(u) is a type whenever u : U . There are some other things
called `paths' π that are classi�ed by expressions u v.

We can only typecheck pairs consisting of an atomic thing of type elm
together with a coercion path, which is meant to be interpreted as proof-
irrelevant.

Γ ` R⇒ elm(u) Γ ` π : u v

〈R, π〉 ⇐ elm(v)

Coercion paths are built up like

x : u v ∈ Γ

Γ ` x : u v Γ ` id : u u

Γ ` π : u v Γ ` π′ : v w

Γ ` π;π′ : u w

2007.6.13
Or perhaps:

Γ ` R⇒ a · S Γ ` P : S S′ : A > type

〈R,P 〉 ⇐ a · S′

with coercions

x : u v : A ∈ Γ

Γ ` x : u v : A

Γ ` π : u v : A Γ ` π′ : v w : A

Γ ` π;π′ : u w : A

Γ ` () : () () : type > type

Γ ` π : M M ′ : A Γ ` P : S S′ : [M ′/x]AB > type

Γ ` (π;P) : (M ;S) (M ′;S′) : Πx:A.B > type

I would hope for the lemma

Lemma 0.3 If Γ ` M M ′ : A and Γ ` N : [M/x]AB, then Γ ` N :
[M ′/x]AB.

This would justify the asymmetric substitution of M ′ in the spine cons
rule immediately above. However, since x might occur negatively, I might
need to actually be equality.

47

2007.6.14
Alice and Bob agree that the sun has always risen in the past, and that

it is likely to rise again tomorrow morning. But the next morning arrives,
and Bob is alarmed to �nd that the sun does not rise, but instead a strange,
yellowish orb that he decides to call a `smun'. Alice, however, says that
this object is the sun, and it has risen as usual.

Obvious moral: inductive and abductive reasoning depends on our no-
tions of identity of objects and phenomena across time.

I am suspicious of the possibility of monosemy, that a word could in any
sense have one meaning, but we would certainly like to constrain our use of
language to words (or morphemes, or sentences) that have clear and stable
denotations.

A big problem is assessing what I am trying to get at by saying `stable'.
Bob claims that his de�nition of `sun' is stable, and that the yellowish orb
in the sky is not included in it; and yet Alice claims her de�nition of `sun'
is stable too.

This whole business is scarcely di�erent from the classical `grue' argu-
ment, maybe not at all. I thought at �rst that it was, but I'm increasingly
doubting that I can �nd any di�erence.

It is a profound and empirical fact that our notions of stability coincide
so often!

2007.6.15
Another try:

π ::= λx.π | u · P | π1;π2 | π̃

P ::= () | (π;P)

R ::= H · S

N :: λx.N | R • P

a : K ∈ Σ Γ ` R⇒ a · S Γ ` P : S ∼ S′ : K > type

R • P ⇐ a · S′

with coercions typed by

Γ ` π : M ∼M ′ : A Γ ` P : S ∼ S′ : [M/x]AV > W

Γ ` (π;P) : (M ;S) ∼ (M ′;S′) : Πx:A.V > W

Γ ` () : () ∼ () : type > type

48

Γ ` π : M ∼ N : A

Γ ` π̃ : N ∼M : A

Γ ` π : M ∼ N : A Γ ` π′ : N ∼ P : A

Γ ` π;π′ : M ∼ P : A

u : M ∼ N : A ∈ Γ Γ ` P : S ∼ S′ : A > C

Γ ` u · P : [M |S]A ∼ [N |S′]A : C

Γ ` H ⇒ A Γ ` P : S ∼ S′ : A > C

Γ ` H · P : H · S ∼ H · S′ : C
Γ, x : A ` π : M ∼ N : B

Γ ` λx.π : λx.M ∼ λx.N : Πx:A.B

But I shouldn't really bother about canonical forms at the proof level.
Something more like:

π ::= λx.π | u | H | π1 π2 | π1;π2 | π̃ | id

u : M ∼ N : A ∈ Γ

Γ ` u : M ∼ N : A

Γ ` H ⇒ A

Γ ` H : H ∼ H : A
Γ ` π1 : λx.M1 ∼ λx.N1 : Πx:A.B π2 : M2 ∼ N2 : A

Γ ` π1 π2 : [M2/x]AM1 ∼ [N2/x]AN1 : [M1/x]AB

Γ ` id : M ∼M : A

2007.6.16
Consider the relationship between `is' and `seems'. The latter empha-

sizes that some attribution is not certain. Imagine a (meditative) verb X
that emphasizes the attribution is not important. E.g. �I X upset� means
�I am upset, but it does not matter; this is merely a transient state which
does not merit lasting attention, and which I am capable of ignoring�.

2007.6.17
I think I have some better understanding of why the uni�cation problems

that arise from pure LLF (or OLF) are easily decidable.
Let C(Γ; p) be the set of uni�cation problems that can arise from a

query like Γ ` M ⇐ p and R(Γ; p) the set of r that can arise from Γ `
S : A[p] > C[r], and S(Γ; p) the set of uni�cation problems that arise from
same.

Based on
Γ, α : w, x : A@α `M ⇐ B[p ∗ a]

Γ ` λx.M ⇐ A(B

49

We can see C(Γ, α, x; p ∗ α) ⊆ C(Γ; p). Based on

Γ, x : A `M ⇐ B[p]

Γ ` λx.M ⇐ Πx:A.B[p]

We get only the trivial C(Γ, x; p) ⊆ C(Γ; p).
From

(α : w, x : A@α) ∈ Γ Γ ` S : A[α] > C[r] r = p

Γ ` x · S ⇐ C[p]

we see that {e ∧ r =̇ p | e ∈ S(Γ;α), r ∈ R(Γ;α)} ⊆ C(Γ; p). From

x : A ∈ Γ Γ ` S : A[ε] > C[q] r = q

Γ ` x · S ⇐ C[r]

we see that {e ∧ r =̇ p | e ∈ S(Γ; ε), r ∈ R(Γ; ε)} ⊆ C(Γ; p).
From the & and > introduction rules we see C(Γ; p) is closed under

conjunction and contains the trivial uni�cation problem >. Consider now
the(elimination rule:

Γ `M : A[q] Γ ` S : B[p ∗ q] > C[r]

Γ ` (M ;S) : A(B[p] > C[r]

Therefore we make up a new evar Q and see that

{e1 ∧ e2 | e1 ∈ C(Γ, Q;Q), e2 ∈ S(Γ, Q; p ∗Q)} ⊆ S(Γ; p)

and R(Γ, Q; p∗Q) ⊆ R(Γ; p). From the unrestricted application we get only

Γ `M : A[ε] Γ ` S : B[p] > C[r]

Γ ` (M ;S) : Πx:A.B[p] > C[r]

and see only trivial things like S(Γ; p) ⊆ S(Γ; p). At the nil case

Γ ` () : A[p] > A[p]

we get the base case p ∈ R(Γ; p) and > ∈ S(Γ; p).

2007.6.20
I need to make up my mind whether world terms are present in modal

substitutions.

2007.6.24
It seems not at all feasible to maintain well-labelledness as an invariant

during uni�cation, because of the spine cons case � there we don't know

50

what world to plug into the tail, even though in principle there is an answer
that would work if we knew what equation to demand on the labels.

2007.6.25

The idea of a folding editor leaving actual comments (i.e. fold marks)
in the �le seems peculiar, but maybe it's unavoidable.

2007.6.26
I want to say: all a word's meaning is, is its use. But what I would

better say is: a word's use is at least a somewhat clear notion. Let us begin
by thinking about that, and avoid prematurely supposing that we should
be hunting around for its �true meaning�.

2007.6.27
I should be able to get nice modular nesting of motion commands with

zippers if they raise exceptions (or otherwise live in some exception monad)
when they can't move any farther, allowing a handler a level up to move
to the next higher-level container.

I wonder what di�erential operator covers the idea of multiple (ordered?
nonordered?) `non-overlapping' holes? The idea is that when looking at the
second derivative, the hole taken of the already hole-having datastructure
cannot rip out the subtree that has a hole in it.

For a tree whose leaves carry the data, I suppose this is a moot di�erence.
What I'm thinking of is only pertinent for the `recursive derivative' of a µ-
type, which results in the type of lists of the derivative of the body of the
µ with respect to its variable.

Is there a way of discovering the power series in D of a linear operator?
Assuming it's appropriately `analytic'? I feel like this thought occurred to
me a couple weeks ago. I mean, suppose F =

∑
i ciD

i. Then we can probe
F by applying it to monomials:

Fxn =
∑

i

ciD
ixn

=
∑

i

cii!
(
n

i

)
xn−i

in particular
F1 = c0

Fx = c0x+ c1

Fx2 = c0x
2 + 2c1x+ 2c2

Fx3 = c0x
3 + 3c1x2 + 6c2x+ 6c3

51

so
c1 = Fx− xF1

c2 =
Fx2 − 2xFx+ x2F1

2

c3 =
Fx3 − 3xFx2 + 3x2Fx− x3F1

6
and I would conjecture that

ci =
1
i!

∑
j

(−1)j

(
i

j

)
xjFxi−j

Let's see if that works out algebraically:

1
i!

∑
j

(−1)j

(
i

j

)
xj

(∑
k

ckk!
(
i− j
k

)
xi−j−k

)

=
1
i!

∑
j

(−1)j

(
i

j

)(∑
k

ckk!
(
i− j
k

)
xi−k

)

=
1
i!

∑
j

(−1)j i!
j!(i− j)!

(∑
k

ckk!
(i− j)!

k!(i− j − k)!
xi−k

)

=
∑

j

(−1)j 1
j!

(∑
k

ck
1

(i− j − k)!
xi−k

)

=
∑

k

ckx
i−k
∑

j

(−1)j 1
j!

1
(i− j − k)!

=
∑

k

ck
xi−k

(i− k)!
∑

j

(−1)j

(
i− k
j

)

=
∑

k

ck
xi−k

(i− k)!
0i−k

= ci

Sure does!

* * * * * *
I should also be able to get the converse, that Fxn is equal to

∑
i

 1
i!

∑
j

(−1)j

(
i

j

)
xjFxi−j

 i!
(
n

i

)
xn−i

52

=
∑

i

∑
j

(−1)j

(
i

j

)
xjFxi−j

(n
i

)
xn−i

=
∑

i

∑
j

(−1)j

(
i

j

)(
n

i

)
xn−(i−j)Fxi−j

m = i− j, j = i−m

=
∑
m

Fxm
∑

i

(−1)i−m

(
i

i−m

)(
n

i

)
xn−m

=
∑
m

Fxm
∑

i

(−1)i−m i!
(i−m)!m!

n!
i!(n− i)!

xn−m

=
∑
m

Fxmn!xn−m

m!

∑
i

(−1)i−m 1
(i−m)!(n− i)!

=
∑
m

Fxmn!xn−m

m!

∑
i

(−1)i−m

(
n−m
i−m

)
1

(n−m)!

=
∑
m

Fxm n!xn−m

m!(n−m)!

∑
i

(−1)i−m

(
n−m
i−m

)

=
∑
m

Fxm n!xn−m

m!(n−m)!

∑
i

(−1)i

(
n−m
i

)

=
∑
m

Fxm n!xn−m

m!(n−m)!
0n−m

= Fxn n!xn−n

n!(n− n)!

= Fxn

Conclusion: If F is representable as a power series
∑

i ciD
i in D, then

ci =
∑

j

(−x)jF (xi−j)
j!(i− j)!

Take for instance F (P) = P [x/x+ 1].

ci =
∑

j

(−x)j(x+ 1)i−j

j!(i− j)!

53

=
∑

j

(−x)j

j!(i− j)!
∑

k

xk

(
i− j
k

)

=
∑

k

∑
j

(−1)kxj+k

j!k!(i− j − k)!

(m = j + k, k = m− j)

=
∑
m

xm

(i−m)!

∑
j

(−1)m−j

j!(m− j)!

=
∑
m

xm

m!(i−m)!

∑
j

(−1)m−j

(
m

j

)

=
∑
m

xm

m!(i−m)!
0m

=
1
i!

So this is of course the multiset-of-holes operator eD.

2007.6.28
Here's a second attempt at a notion of relativistic CA; the �rst was

sketched in TL from yesterday and also on livejournal. I think it's pretty
much nonsense, actually.

Let S be a set of states. For each n ∈ N+, let Bn be a map Sn → Sn.
E.g., for n = 3, think of it as a way of translating states that looks like

� � � 7→
�
�
�

Also suppose there is an involution I : S → S.
The `laws of physics' are represented by a function f : S × S → S. A

spacetime tableau T : Z2 → S is valid at (x, y) : Z2 if T (x, y) = f(T (x −
1, y), T (x, y − 1)), and valid (full stop) if it is valid over all Z2.

The Bn's behavior can be extended to tableaux as follows, for 0 ≤ i < n.

(Bn(T))(x, ny + i) = πiBn(T (nx, y), T (nx+ 1, y), . . . , T (nx+ (n− 1), y))

Let ∼ be the twist map λ(x, y).(y, x). We can de�ne an operation
T−1 = I ◦ T ◦ ∼. We require that nT = BnT constitutes an action of
the multiplicative monoid N+ on the set of tableaux, and that (p/q)T =

54

Bp((Bq(T−1))−1) constitutes an action of the multiplicative group Q\∅ on
the set of tableaux, and that it preserves validity in the sense that

T valid⇔ T−1 valid

T valid⇔ Bn(T) valid

2007.6.29
A third attempt: consider cells as transforming one-dimensional data

along their bottom and left edges into similarly typed data along their top
and right edges. Suppose that we can locally boost space by interchanging a
row with a column, `rewiring' things as appropriate, allowing for operators
on these bits of one-dimensional data that smoosh (and splice) and stretch
(and separate) them as appropriate.

I had a �ash of coherent thinking about the completeness of focussing,
as pertains to the `inside-out' induction that I think I tried and failed to
apply once upon a time. It should go something like this:

We want to prove a series of theorems, one for each connective, (although
I bet strongly that I can make the argument uniform in them but for the
important case) like for ⊗

If (Γ ` J)[d+r/x+][r/y] then (Γ ` J)[d+p⊗ d+q/x+][d+p⊗ d+q/y]

where x+ is a positive propositional variable, y is a neutral propositional
variable, and p, q, r are (neutral) propositional atoms not appearing in Γ `
J . By virtue of the duplicate substitution on the right, the cases for the d+

rules are trivial! The only interesting case is the neutral init rule, in which
case we merely need to cough up an O(1)-sized proof of completeness of
the particular connective.

We should be able to then build up proofs of the identity property for
any compound connective by growing it at the leaves.

2007.6.30
The focussing completeness idea from yesterday is bunk after all; I made

a mistake in the `trivial' case passing from an active judgment to a truth
judgment. The only other novel idea I've had lately is replacing already
asynchronously decomposed signed atoms p± with `super-active' judgments
that have even higher priority than the usual ones. This is of course rather
sketchy, though.

In HLF:

55

Recall that the synth-checking boundary requires base types, and so
sensibly requires exact equality of the synthed and checked type (since
they have no worlds in them) but allows slack in the judgmental world.

Γ ` R⇒ (a · S′)[p′] S = S′ p ≡ACU p′

Γ ` R⇐ (a · S)[p]

For the sake of uni�cation I want to add contextual modal variables u[σ]
to the production for atomic terms R. Thus I should be synthesizing them.

u :: (Ψ ` a · S[p]) ∈ ∆ Γ ` σ;σw : Ψ

Γ ` u[σ]⇒ (a · S[σ])[p[σw]]

Here σ is just a substitution for term variables, and σw is a substitution for
world variables.

Γ `M ⇐ (A[σ;σw])[ε] Γ ` σ;σw : Ψ

Γ ` [M/x]A, σ;σw : Ψ, x : A

Γ ` p⇐ w Γ ` σ;σw : Ψ

Γ ` σ; [p/α], σw : Ψ, α : w

Γ ` id; id : ·
Alternatively I might think of σ as being one big subsitution and being

able to pull out σt its term part and σw its world part.

u :: (Ψ ` a · S[p]) ∈ ∆ Γ ` σ : Ψ

Γ ` u[σt]⇒ (a · S[σt])[p[σw]]

Γ `M ⇐ (A[σ])[ε] Γ ` σ : Ψ

Γ ` [M/x]A, σ : Ψ, x : A

Γ ` p⇐ w Γ ` σ : Ψ

Γ ` [p/α], σ : Ψ, α : w

I would want to show then that if

Lemma 0.4 All of the following:

• If Ψ `M ⇐ a·S[p] and Γ ` σ : Ψ, then Γ `M [σt]⇐ (a·S[σt])[p[σw]].

• If Ψ ` S : A[p] > (a · S)[q] and Γ ` σ : Ψ, then Γ ` S[σt] :
A[σ][p[σw]] > (a · S[σt])[q[σw]].

56

• If Ψ ` R⇒ a ·S[p] and Γ ` σ : Ψ, then Γ ` R[σt]⇒ (a ·S[σt])[p[σw]].

Proof By induction on the derivation.

Case: R = x · S0 for x such that Ψ = Ψ, x : A and σ = [N/x]A, σ0.

x : A ∈ Ψ Ψ ` S0 : A[ε] > a · S[p]

Ψ ` x · S0 ⇒ a · S[p]

By induction hypothesis we get (starting to be sloppy about σt, σw)

Γ ` S0[σ] : (A[σ])[ε] > a · (Sσ)[p[σ]]

But by construction of the substitution we know N ⇐ (A[σ0])[ε] and
A[σ0] is the same as A[σ] since x can't occur free in A. so we can
form a reduction Γ ` [N |S0[σ]]A ⇒ a · (S[σ])[p[σ]]. And this is what
(x · S0)[σ] is equal to anyhow!

* * * * * *
Some important things to show:

1. The e�ect of a simultaneous substitution is the same as unravelling
it into sequential substitutions for individual variables.

2. (subsequently) that simultaneous substitutions commute with ordi-
nary substitutions.

3. If [N/x]A ∈ σ, where Γ ` σ : Ψ, then Γ ` N ⇐ σA. This requires
`weakening' the substitution that applies to the variables actually in
the type A, up to the whole substitution σ � of course we're only
adding things that don't a�ect A, which is exactly why the lemma
holds.

4. The following two expressions are equal:

[λx1. . . . λxn.M/u]Πx1:A1....o(u · (M1; · · · ;Mn))

[M//u]xn:An,...,x1:A1`o(u[Mn/xn, . . . ,M1/x1])

A meditation on sequences of arguments.
Ordinary application:

(· · · (f M1) · · ·Mn)

57

Spine application:

f : Πx1:A1. . . .Πxn:An.o S : Πx1:A1. . . .Πxn:Ano > o

f · (M1; (· · ·Mn; () · · ·))

Σ-types:

B = (Σx1:A1. . . .Σxn:An.>) f : B → o 〈M1, 〈· · ·Mn, 〈〉〉 · · ·〉 : B

f 〈M1, 〈· · ·Mn, 〈〉〉 · · ·〉

Substitutions:

Ψ = (· · · (x1 : A1), . . .), xn : An f :: (Ψ ` o) Mn.M1.id : Ψ

f [Mn.M1.id] : o

LF in substitution-form:

K ::= ΠΨ.type

A ::= ΠΨ.a[σ]

M ::= λΨ̂.H[σ]

H ::= c | x

σ ::= id | (M/x), σ

Γ,Ψ ::= · | Γ, x : A

Ψ̂ ::= · | Ψ, x

Σ ::= · | Σ, a : K | Σ, c : A

x : A ∈ Γ

Γ ` x⇒ A

c : A ∈ Σ

Γ ` c⇒ A

Γ ` H ⇒ ΠΨ.a′[ρ] Γ ` θ : Ψ a = a′ σ = ρ{θ}

Γ ` λΨ̂.H[θ]⇐ ΠΨ.a[σ]

Γ ` Ψ ctx a : Π∆.type ∈ Σ Γ,Ψ ` σ : ∆

Γ ` ΠΨ.a[σ] : type

58

Γ ` Ψ ctx

Γ ` ΠΨ.type : kind

Γ ` id : ·
Γ `M ⇐ A{σ} Γ ` σ : Ψ

Γ ` (M/x)A, σ : (Ψ, x : A)

` · ctx
` Γ ctx Γ ` A : type

` Γ, x : A ctx

(M1/x1, . . . ,Mn/xn)σ = (M1{σ}/x1, . . .Mn{σ}/xn)

(λΨ̂.H[ρ])σ =
{
λΨ̂.H[ρ{σ}] if H 6∈ dom(σ);
λΨ̂.R{ρ{σ}} if H = x and λ∆̂.R/x ∈ σ
(ΠΨ.a[ρ])σ = ΠΨ.a[ρ{σ}]

Recall that the risk of comparing substitutions for equality is that we
might sometimes want to allow noncanonical substitutions to detect pat-
terns and so on. Here, however, it looks okay.

I wonder if I can incorporate base-type polymorphism?

Base Classi�ers v ::= R | base
Classi�ers V ::= ΠΨ.v

Atomic Terms R ::= x[σ]
Terms M ::= λΨ̂.R

Substitutions σ ::= id | (M/x)V , σ
Contexts Γ ::= · | Γ, x : V

x : ΠΨ.v ∈ Γ Γ ` σ : Ψ

Γ ` x[σ]⇒ v{σ}

Γ,Ψ ` R⇒ v′ v = v′

Γ ` λΨ̂.R⇐ ΠΨ.v

Γ ` Ψ ctx Γ,Ψ ` R⇒ base

Γ ` ΠΨ.R⇐ ok

Γ ` Ψ ctx

Γ ` ΠΨ.base⇐ ok

Γ ` id : ·
Γ `M ⇐ V {σ} Γ ` σ : Ψ

Γ ` (M/x)V , σ : (Ψ, x : V)

59

` · ctx
` Γ ctx Γ ` V ⇐ ok

` Γ, x : V ctx

(M1/x1, . . . ,Mn/xn){σ} = (M1{σ}/x1, . . .Mn{σ}/xn)

(x[ρ]){σ} =
{
R{ρ{σ}} if (λΨ̂.R)/x ∈ σ;
x[ρ{σ}] otherwise.

(ΠΨ.R){σ} = ΠΨ.(R{σ})

(λΨ̂.R){σ} = λΨ̂.(R{σ})

base{σ} = base

2007.7.1

In DeBruijn form: (still highly incomplete)

Base Classi�ers v ::= R | base
Classi�ers V ::= ΠΨ.v

Atomic Terms R ::= n[σ]
Terms M ::= λnR

Substitutions σ ::= id |M.σ
Contexts Γ,Ψ ::= · | Γ, V

(deBruijn indices are 0-based)

↑n+1(Γ(n)) = ΠΨ.v Γ ` ρ : Ψ

Γ ` n[ρ]⇒ v{ρ}
Γ,Ψ ` R⇒ v′ v = v′

Γ ` λ|Ψ|R⇐ ΠΨ.v
Γ ` Ψ ctx Γ,Ψ ` R⇒ base

Γ ` ΠΨ.R⇐ ok

Γ ` Ψ ctx

Γ ` ΠΨ.base⇐ ok

Γ ` id : ·
Γ `M ⇐ V {σ} Γ ` σ : Ψ

Γ ` (M.σ) : (Ψ, V)

Γ ` · ctx
Γ ` Ψ ctx Γ,Ψ ` V ⇐ ok

Γ ` Ψ, V ctx

{σ} = {σ}0

60

(Γ, V){σ}n = (Γ{σ}n), V {σ}n+|Γ|

(M.ρ){σ}n = (M{σ}n.ρ{σ}n)

(n[ρ]){σ}m =

 (n− |σ|)[ρ{σ}m] if n−m ≥ |σ|
(↑mk R){ρ{σ}m} if σ(n−m) = λkR;
n[ρ{σ}m] if n−m < 0.

(ΠΨ.R){σ}n = Π(Ψ{σ}n).(R{σ}n+|Ψ|)

(λmR){σ}n = λm(R{σ}n+m)

base{σ}n = base

Lemma 0.5 If σ(n) = M , and Ψ(n) = V , and Γ ` σ : Ψ, then Γ ` M ⇐
(↑nV){σ}.

Proof By induction.

Case: n = 0. Immediate.

Case: n = m + 1. Then σ has the form (M ′.σ0), and σ0(m) = M . Ψ has
the form Ψ0, V

′, and Ψ0(m) = V .

Γ `M ′ ⇐ V ′{σ}0 Γ ` σ0 : Ψ0

Γ ` (M ′.σ0) : (Ψ0, V
′)

By induction hypothesis, Γ ` M ⇐ (↑mV){σ0}. To show: Γ ` M ⇐
(↑m+1V){M ′.σ0}, but this follows.

Lemma 0.6 If
Γ,∆,Γ′,Ψ ` v ⇐ ok |Γ′| = m

Γ,∆,Γ′ ` ρ : Ψ Γ ` σ : ∆

then v{ρ}{σ}m = v{σ}m+|ρ|{ρ{σ}m}

Lemma 0.7 (Substitution) Suppose Γ,∆,Γ′ ` J and Γ ` σ : ∆. Then
Γ,Γ′{σ}0 ` J{σ}|Γ′|.

↑n+1(Γ(n)) = ΠΨ.v Γ ` ρ : Ψ

Γ ` n[ρ]⇒ v{ρ}

(n[ρ]){σ}m =

 (n− |σ|)[ρ{σ}m] if n−m ≥ |σ|
(↑mk R){ρ{σ}m}0 if σ(n−m) = λkR;
n[ρ{σ}m] if n−m < 0.

61

consider the variable case of this theorem:

↑n+1((Γ,∆,Γ′)(n)) = ΠΨ.v Γ,∆,Γ′ ` ρ : Ψ

Γ,∆,Γ′ ` n[ρ]⇒ v{ρ}

I have already by the induction hypothesis that (with m = |Γ′|)

Γ,Γ′{σ} ` ρ{σ}m : Ψ{σ}m

and I want to show

Γ,Γ′{σ} ` n[ρ]{σ}m ⇒ v{ρ}{σ}m

in the �rst case, n ≥ m + |σ|, so (Γ,∆,Γ′)(n) = Γ(n − m − |σ|) =
(Γ,Γ′{σ})(n− |σ|). Rule application yields

↑n−|σ|+1((Γ,Γ′{σ})(n− σ)) = ΠΨ′.v′ Γ,Γ′{σ} ` ρ{σ}m : Ψ′

(Γ,Γ′{σ})(n− |σ|)[ρ{σ}m]⇒ v′{ρ{σ}m}

We know that ↑|σ|(ΠΨ′.v′) = ΠΨ.v???

(Γ,Γ′{σ}0)(n− |σ|) = Π∆.v Γ,Γ′{σ}0 ` ρ{σ}m : ∆{σ}m
Γ,∆,Γ′ ` n[ρ]⇒ v{ρ}

in the second case, (Γ,Ψ,Γ′)(n) = Ψ(n − m) = Π∆.v. Here k = |∆|. I
also know that σ(n − m) = λkR. By the previous lemma, Γ ` λkR ⇐
(↑n−mΠ∆.v){σ}. In other words Γ ` λkR⇐ (Π∆.↑n−m

kv{σ}k). By inver-
sion

Γ,∆ ` R⇒ ↑n−m
kv{σ}k

we seem to be able to shift to get

Γ,Γ′{σ},∆ `↑mk R⇒ ↑nkv{σ}k

now substitute:
Γ,Γ′{σ},∆ `↑mk R⇒ ↑nkv{σ}k

(Γ,Γ′{σ}0)(n− |σ|) = Π∆.v Γ,Γ′{σ}0 ` ρ{σ}m : ∆{σ}m
Γ,Γ′{σ}0 ` (↑mk R){ρ{σ}m}0 ⇒ (↑n+1

k v){ρ}0{σ}|Γ′|
in the third case, n < m, so (Γ,Ψ,Γ′)(n) = Γ′(n). Rule application

yields

(Γ,Γ′{σ}0)(n) = (Π∆.v){σ}m−n−1 Γ,Γ′{σ}0 ` ρ{σ}m : ∆{σ}m
(Γ,Γ′{σ}0) ` n[ρ{σ}m]⇒ (↑n+1

|∆| v{σ}m−n−1+|∆|){ρ{σ}m}0

62

Base Classi�ers v ::= R | type
Classi�ers V ::= ΠΨ.v

Atomic Terms R ::= x[σ]
Terms M ::= λΨ̂.R

Substitutions σ ::= id |M.σ
Contexts Γ ::= · | Γ, x : V

x : ΠΨ.v ∈ Γ Γ ` σ : Ψ

Γ ` x[σ]⇒ v{σ/Ψ}

Γ,Ψ ` R⇒ v′ v = v′

Γ ` λΨ̂.R⇐ ΠΨ.v
Γ ` Ψ ctx Γ,Ψ ` R⇒ type

Γ ` ΠΨ.R⇐ ok

Γ ` Ψ ctx

Γ ` ΠΨ.type⇐ ok

Γ ` id : ·
Γ `M ⇐ V {σ/Ψ} Γ ` σ : Ψ

Γ `M.σ : (Ψ, x : V)

Γ ` · ctx
Γ ` Ψ ctx Γ,Ψ ` V ⇐ ok

Γ ` Ψ, x : V ctx

(M1. . . .Mn.id){σ/Ψ} = (M1{σ/Ψ}. . . .Mn{σ/Ψ}.id)

(V1, . . . , Vn){σ/Ψ} = (V1{σ/Ψ}, . . . , Vn{σ/Ψ})

(x[ρ]){σ/Ψ} =
{
R{ρ{σ/Ψ}/∆} if Ψ(n) = x : Π∆.V and σ(n) = λ∆̂.R;
x[ρ{σ/Ψ}] otherwise.

(Π∆.v){σ/Ψ} = Π∆.(v{σ/Ψ})

(λ∆̂.R){σ/Ψ} = λ∆̂.(R{σ/Ψ})

type{σ/Ψ} = type

Don't know whether to treat worlds as being really modal, or else just
talking about restriction to certain contexts. The latter sounds easier...

2007.7.2
By the equivalence principle, an accelerated reference frame behaves lo-

cally the same as a frame at rest under a uniform gravitational �eld. Is

63

there any value to the intuition that this means massive objects act as if
they are expanding and therefore accelerating towards us? Under appro-
priate rescaling, can gravitational attraction be construed not as warping
of spacetime, but progressive consumption of it?

2007.7.3
Using the same tricks as are used in η-expansion for polymorphism, I

think I can get away with n-ary homogeneous tuples that actually allow
projection. The analogue of the trick is that if I have a variable x whose
type is a vector of type a (which is required to be a base type) of length
sn(i), where i : nat is a variable, then x's η-expanded canonical form is

hdx :: hd tlx :: · · · :: hd tln−1 x :: ηi(tln x)

where the understanding is that hereditary substitution does things like

[z/i]ηi(R) = []

[s n/i]ηi(R) = hdR :: ηn(tlR)

The restriction the list carrier type to base types ensures that I don't have
to bother about actually η-expanding elements of the list as well, which
would frightfully intertwine the term and type syntaxes, as is actually done
in the case of Nanevski-Morrisett-Birkedal polymorphism.

2007.7.4
So if I try to put a series of modal boxes back into `substitution-form'

LF, I don't seem to get the restriction of local contexts present in Frank's
description of how he tried to close CMTT up to ω. The only changes
required seem to be

Contexts Γ ::= · | Γ, x :n V

x :n ΠΨ.v ∈ Γ Γ ` σ : Ψ

Γ ` x[σ]⇒ v{σ/Ψ}

Γ
∣∣
≥n
`M ⇐ V {σ/Ψ} Γ ` σ : Ψ

Γ `M.σ : (Ψ, x :n V)

Γ ` Ψ ctx Γ,Ψ ` V ⇐ ok

Γ ` Ψ, x :n V ctx

No, hm, now that I think about it, the substitution formation rule
should restrict the remaining substitution also (and the context formation

64

rule should restrict some part of the context when checking V , though
I'm not sure how much) to maintain the invariant that we only type-check
against well-formed types. This might impose the constraint that any par-
ticular context pragmatically needs to be ordered by modality strength in
order to make substitutions possible.

* * * * * *
I realize why the context formation rule has to in fact be the very

restrictive
Γ
∣∣
n
` Ψ ctx (Γ,Ψ)

∣∣
n
` V ⇐ ok

Γ ` Ψ, x :n V ctx
It's because the following should obviously be true: if Γ is a valid context,
then so too is Γ

∣∣
n
. Therefore n-strong hypotheses should not be able to

having types depending on weaker ones, for the latter might disappear
during a restriction.

* * * * * *
Also, hey, I seem to get a form of negation in these base-type polymor-

phism frameworks! How weird.

¬A = A→ (Πx:type.x)

I only get to eliminate it at base types, but I can lift it to function types.
Let's try to do this in substitution form:

¬A = Π(x : A, y : type).y[]

So for instance I can still prove x : A `M : ¬¬A by

M = λ(x0, t0).x0[ηA(x), t0[]]

and if x : A `M : B then y : ¬B ` N : ¬A by

N = λ(x, t).y[M, t[]]

composing these and setting B = ¬¬A we get

y : ¬¬¬A ` λ(x, t).y[λ(x0, t0).x0[ηA(x), t0[]], t[]] : ¬A

Whoops, I guess I never actually needed to eliminate that falsehood at
anything other than base types. What about disjunction?

A ∨B = Πx:type.(A→ x)→ (B → x)→ x

Let a type C → D be given. Can we do this?

(A ∨B)→ (A→ C → D)→ (B → C → D)→ C → D

65

It seems so.
λdb1b2c. d D (λx.b1 x c) (λx.b2 x c)

So this kind of thing will obey β but basically no η laws. And of course it
seriously infects every base type with eliminations!

2007.7.5

(m[ρ]){σ}n =

m[ρ{σ}n] if m− n < 0
R↑nk{ρ{σ}n} if σ(m− n) = λkR
(m− |σ|)[ρ{σ}n] if m− n ≥ |σ|

Lemma 0.8 X↑{M.σ} = X{σ}

Lemma 0.9 X↑m{σ}1+n = X{σ}n↑m

Lemma 0.10 X↑mk+m{σ}k+m+n = X{σ}k+n↑mk+m

Lemma 0.11 If Γ,∆ ` J then Γ,Ψ,∆↑|Ψ| ` J↑|Ψ||∆|.

Lemma 0.12 If Γ(m) = V then (Γ{σ})(m) = V {σ}|Γ|−m−1.

Lemma 0.13 If Ψ(m) = V and Γ ` σ ⇐ Ψ then Γ ` σ(m)⇐ V ↑m+1{σ}.

Γ(m) = Π∆.v Γ ` ρ⇐ ∆↑m+1

Γ ` m[ρ]⇒ v↑m+1
|∆| {ρ}

Theorem 0.14 If Γ,Ψ,Γ′ ` J and Γ ` σ ⇐ Ψ, then Γ,Γ′{σ} ` J{σ}|Γ′|.

Proof By induction.

Case: Abbreviate n = |Γ′|, and s = |Ψ| = |σ| and k = |∆| = |ρ|. The
derivation of J is

(Γ,Ψ,Γ′)(m) = Π∆.v Γ,Ψ,Γ′ ` ρ⇐ ∆↑m+1

Γ,Ψ,Γ′ ` m[ρ]⇒ v↑m+1
k {ρ}

By i.h., we have Γ,Γ′{σ} ` ρ{σ}n ⇐ ∆↑m+1{σ}n. We must show

Γ,Γ′{σ} ` (m[ρ]){σ}n ⇒ v↑m+1
k {ρ}{σ}n

Subcase: m < n.

66

(Γ,Ψ,Γ′)(m) = Π∆.v Assumption
Γ′(m) = Π∆.v
Γ′{σ}(m) = (Π∆.v){σ}n−m−1 Lemma 0.12
(Γ,Γ′{σ})(m) = (Π∆.v){σ}n−m−1

(Γ, Γ
′{σ})(m) = (Π∆.v){σ}n−m−1

Γ, Γ
′{σ} ` ρ{σ}n ⇐ ∆↑m+1{σ}n

=
Γ, Γ

′{σ} ` ρ{σ}n ⇐ ∆{σ}n−m−1↑m+1

Γ, Γ
′{σ} ` m[ρ{σ}n] ⇒ v{σ}k+n−m−1↑m+1

k {ρ{σn}}
=

Γ, Γ
′{σ} ` m[ρ{σ}n] ⇒ v↑m+1

k {σ}k+n{ρ{σ}n}
=

Γ, Γ
′{σ} ` m[ρ{σ}n] ⇒ v↑m+1

k {ρ}{σ}n

Subcase: n ≤ m < n+ s.

Subcase: m ≥ n+ s.

2007.7.6
In the code to check substitution-form LF, I do something like
fun ok base G r = r = (∼1,[]) orelse synth G r = (∼1,[])
Would it be terminating to check in a while loop if r synths to something

that synths to something that · · · synths to type? I'm pretty sure it does,
for the head of a classi�er of any variable has to exist in a smaller context.

2007.7.7
It's questionable how useful the tower of hypernkinds actually is, given

the restriction to base everythings. Still kind of interesting. Multimodal
stu� works out great, and proof irrelevance seems to also; not certain the
full extent of how they can be combined. Taking their cartesian product
seems okay, but de�nitely not to have modal restriction turn disquali�ed
modal variables into irrelevant ones.

2007.7.8
Apparently the conditions put on Hilbert spaces make them unique such

that they are isomorphic to their dual spaces. Awfully nice, that!

2007.7.9
The quantum harmonic oscillator is starting to make some sense. I still

haven't internalized what the ladder operators look like in position space,
but they're super-spookily suggestive in count space of how di�erentiation
and `times x' work on generating functions.

67

2007.7.10
In GR, it's still not clear to me how you coordinatize the curvature

vector.
DeBruijnifying substitution-style LF does not seem at all easier than

otherwise, which is annoying.

2007.7.11
If a state is z = kq + ip then hamilton's equations are

kHz = iż∗

2007.7.12
Fully-contextual modal stu� looks cute in simple types:

Props A ::= Γ→ p
Contexts Γ ::= · | Γ, An

Γ,Ψ ` p

Γ ` Ψ→ p

Γ ` Ψ

Γ, (Ψ→ p)n ` p

Γ
∣∣
n
` A Γ ` Ψ

Γ ` Ψ, An Γ ` ·

Alternatively I could get it down to 3 rules like:

Γ ` Ψ

Γ, (Ψ→ p)n ` p

Γ
∣∣
n
,Ω ` p Γ ` Ψ

Γ ` Ψ, (Ω→ p)n Γ ` ·

Or by cheating, 2 rules:

Γ ` Ψ

Γ, (Ψ→ p)n ` p

Γ
∣∣
ni
,Ωi ` pi

Γ ` (Ωi → pi)ni

Or even 1 rule!

∀(Ω→ q)m ∈ Ψ.(Γ
∣∣
m
,Ω ` q)

Γ, (Ψ→ p)n ` p

68

Modal without contextual:

Contexts Γ ::= · | Γ, An

Props A ::= p | A→n B

Γ, An ` B

Γ ` A→n B

Γ
∣∣
n
` A Γ, B0 ` C

Γ, (A→n B)m ` C

Γ, p0 ` p

2007.7.13
Finally �gured out how to derive relativistic momentum and mass from

Lorentz invariance of the Lagrangian.
Say we've got L(q, q̇). First of all assume it's independent of q, and

only depends on the magnitude of q̇. So we've got some function L(v).
Consider the following two (Lorentz-equivalent) scenarios. Scenario (I): A
particle at the origin sits around at rest for one time-unit, reaching event
(1, 0). Scenario (II) (Lorentz-transformed from (I) by velocity v) a particle
moves inertially from the origin to the event γ(1, v). We are abbreviating
γ = 1√

1−v2 as customary. Computing the Lagrangian integral for (I) and
(II) and setting them equal we get∫ t=1

t=0

L(0) =
∫ t=γ

t=0

L(v)

but this means
L(0) = γL(v)

so L(v) = L(0)/γ. We know what the Lagrangian must be for all velocities,
assuming we know what it is for v = 0.

Now we de�ne momentum to be the q̇-derivative of the langrangian, and
de�ne mass to be momentum divided by velocity. We easily get

p = Lq̇ =
d

dv
L(0)

√
1− v2 =

L(0)v√
1− v2

= L(0)γv

and
m = p/v = L(0)γ

Clearly L(0) is just the rest-mass of the particle.

2007.7.14
I think I �nally believe in the equivalence of provability-expressivity of

intuitionistic and classical multimodal logic. The key to the proof being
sensible is precisely a focusing discipline for both systems.

69

Intuitionistic system:

Contexts Γ,Ψ,Ω ::= · | Γ, An

Props A ::= Ψ→ p

Γ ` Ψ

Γ, (Ψ→ p)n ` p
∀(Ω→ p)n ∈ Ψ. (Γ

∣∣
n
,Ω ` p)

Γ ` Ψ
Classical system:

Contexts ∆,Ξ ::= · | ∆, Cn

Props C ::= p | p⊥ |
∧

Ξ |
∨

Ξ

∆, p, p⊥ ⇓
∆, C ⇓

∆, Cn ⇓
∆,Ξ ⇓

∆,
∧

Ξ ⇓
∀Cn ∈ Ξ. (∆

∣∣
n
, C ⇓)

∆,
∨

Ξ ⇓

Double-negation translation:

∆ ⇓ ⇔ ∆∗ ` ?

¬Ψ = Ψ→ ?

∼(Cn, . . .) = ((¬C)n, . . .)

(
∧

Ξ)∗ = ¬¬(Ξ∗)

(
∨

Ξ)∗ = ¬∼(Ξ∗)

p∗ = p

(p⊥)∗ = ¬p

The rule
∆∗, C ` ?

∆∗, Cn ` ?
is admissible. Proof analogs of other rules go like

p ` p

∆∗, p, p→ ? ` ?

∆∗,Ξ∗ ` ?

∆ ` ¬(Ξ∗)

∆,¬¬(Ξ∗) ` ?

∀Cn ∈ Ξ. (∆∗∣∣
n
, C∗ ` ?)

∆∗ ` ∼(Ξ∗)

∆∗,¬∼(Ξ∗) ` ?

70

Box-translation:
x ::= t | f

Γt, p⊥ ⇓ ⇔ Γ ` p
Γt,
∨

Ψf ⇓ ⇔ Γ ` Ψ

(Am1
1 , . . . , Amn

n)x = ((Ax
1)m1+1, . . . , (Ax

n)mn+1)

(Ψ→ p)t =
∨

(
∨

Ψf , p)

(Ψ→ p)f =
∧

(Ψt, p⊥)

Classical proof analogs of intuitionistic rules go like

Γt,
∨

Ψf ⇓ p, p⊥ ⇓

Γt,
∨

(
∨

Ψf , p), p⊥ ⇓

Γt,
∨

(
∨

Ψf , p)n, p⊥ ⇓

∀(
∧

(Ωt, p⊥))n+1 ∈ Ψf . (Γt
∣∣
n+1

,Ωt, p⊥ ⇓)

∀(
∧

(Ωt, p⊥))n+1 ∈ Ψf . (Γt
∣∣
n+1

,
∧

(Ωt, p⊥) ⇓)

Γt,
∨

Ψf ⇓

The important thing about this second proof is that
∨

Ψf cannot survive
to the top right, because of modal exclusion.

Hmm... Actually, since to complete the proof I would have to take
advantage of the invertibility of

∨
anyway, I basically want the induction

hypothesis to actually be

Γt, p⊥ ⇓ ⇔ Γ ` p
∀An ∈ Ψ.(Γt

∣∣
n+1

, Af ⇓) ⇔ Γ ` Ψ

which would allow me to restore the more symmetric de�nition

(Ψ→ p)t =
∨

(Ψf , p)

Alternative classical system:

Contexts ∆,Ξ ::= · | ∆, J
Judgments J ::= C tn | C fn

Props C ::= p |
∧

Ξ

71

∆, p t, p f ⇓
∆, C t ⇓

∆, C tn ⇓
∆
∣∣
n
, C f ⇓

∆, C fn ⇓
∆,Ξ ⇓

∆,
∧

Ξ t ⇓
∀J ∈ Ξ. (∆, J̃ ⇓)

∆,
∧

Ξ f ⇓

Hm, this doesn't actually seem any simpler.

Classical Logical Framework?

Contexts ∆,Ξ ::= · | ∆, x :n V
Substitutions σ ::= id | B.σ

Classi�ers V ::= v | v⊥ |
∧

Ξ |
∨

Ξ
Base Classi�ers v ::= B | Un

Branches B ::= Ξ.E
Expressions E ::= x[σ] | x[B] | y[x]

∆, x : v, y : v⊥ ` y[x] ⇓

x :n
∧

Ξ ∈ ∆ ∆,Ξ ` E ⇓

∆ ` x[Ξ.E] ⇓

x :n
∨

Ξ ∈ ∆ ∆ ` σ : Ξ

∆ ` x[σ] ⇓

∆
∣∣
n
, u : V ` E ⇓ ∆ ` σ : Υ

∆ ` (u.E).σ : (Υ, x :n V) ∆ ` id : ·

m ≥ n

∆ ` Um ⇒ classn

∆, u : v⊥ ` E ⇓ ∆ ` v ⇒ classn+1

∆ ` u.E ⇒ classn

Maybe disjunctions are not allowed to be dependent? Conjunctions are
basically Σs, right? Good lord, what happens if you try to perp a

∧
, then?

Maybe this doesn't work after all.

2007.7.15
The solution to dependent sigmas being hard to refute might just be

dependent nand!

Classi�ers V ::= v | v⊥ | ΣΞ | NΞ

x : NΞ ∈ ∆ ∀(Ξ′, u : V) ≤ Ξ.(∆,Ξ′, u : V ⊥ `Mi ⇓)

∆ ` x[Ξ̂′, u.M] ⇓

72

where ≤ means `is a pre�x of'

(v⊥)⊥ = v

(v)⊥ = v⊥

(ΣΨ)⊥ = NΨ

(NΨ)⊥ = ΣΨ

Maybe this means splitting the context into true and false assumptions
is the right way to go after all.

Booleans b ::= t | f
Contexts ∆,Ξ ::= · | ∆, x :bn V

Substitutions σ ::= id | B, σ
Classi�ers V ::= v | ΣΞ

Base Classi�ers v ::= B | Un

Branches B ::= Ξ̂.E
Expressions E ::= x[σ] | x[B] | y[x]

y :fn v, x :tn v ∈ ∆

∆ ` y[x] ⇓
x :fn ΣΞ ∈ ∆ ∆ ` σ : Ξ

∆ ` x[σ] ⇓

x :tn ΣΞ ∈ ∆ ∆,Ξ ` E ⇓

∆ ` x[Ξ̂.E] ⇓

∆ ` id : ·
∆ ` σ : Ξ ∆

∣∣
m
, x :b̄ V {σ/Ξ} ` E ⇓

∆ ` (x.E), σ : (Ξ, u :bm V)

2007.7.16
The remaining thing about classicizing LF that still confuses me is what

happens at the classi�er level. Since these systems seem rather insensitive
to what the base classi�ers are, I'm tempted to de�ne classi�ers and context
validity by something like

Classi�ers V ::= v | ΣΨ
Base Classi�ers v ::= (u.E : v) | Un

(Γ,Ψ)
∣∣
n
` V ⇐ class

Γ ` Ψ, x :bn V ctx

Γ ` Ψ ctx

Γ ` ΣΨ⇐ class

Γ ` v ⇒n class

Γ ` v ⇐ class

73

Γ, u :f v ` E ⇓ Γ ` v ⇒n+1 class

Γ ` (u.E : v)⇒n class

m ≥ n

Γ ` Um ⇒n class

2007.7.17
In fact the apparent insensitivity of much of the metatheory of LF ex-

tensions is quite frustrating! I suppose I want to by �at impose a constraint
that type checking should maintain the invariant that all contexts and in-
put types should be valid, but it's not clear where this constraint comes
from. If one was more liberal about allowing the presence of ill-formed
types, what damage would it do to adequacy theorems?

I would conjecture that the answer is `none' but clearly we want kind-
checking in day-to-day Twelf hacking. If I write down a clause of a meta-
proof, then it being ill-typed is fairly disastrous. Already I want to use the
re�nement ability that dependent types give me at the kind level to provide
a sanity check on my de�nitions.

2007.7.18

Γ,Ψ ` R⇒ v

Γ ` λΨ̂.R⇐ ΠΨ.v

x :j ΠΨ.v ∈ Γ Γ ` σ ⇐ Ψ hyp(j)

Γ ` x[σ]⇒ v{σ/Ψ}

Γ@j `M ⇐ V {σ/Ψ} Γ ` σ ⇐ Ψ

Γ `M.σ ⇐ Ψ, x :j V

Γ ` type⇒ class
Γ ` R⇒ type

Γ ` R⇒ class

(Γ,Ψ) ∗ j ` V ⇐ class Γ ` Ψ ctx

Γ ` Ψ, x :j V ctx

Γ,Ψ ` v ⇒ class Γ ` Ψ ctx

Γ ` ΠΨ.v ⇐ class

Claim: we should only type-check in valid contexts, against valid types.
Claim: ` Γ ctx and Γ ` Ψ ctx i� ` Γ,Ψ ctx

Postulate Let ? ∈ {@, ∗}.
≤ is re�exive.
i ∗ j ≤ (i ? k) ∗ (j ? k)

74

If i ≤ j and hyp(i) then hyp(j).
Both @ and ? are monotone.
hyp(j@j)
If hyp(j), then i ∗ j ≤ i

Lemma 0.15 1. If Γ ≤ Γ′ and Γ ` J , then Γ′ ` J .

2. If ` Γ ctx, then ` Γ ? j ctx.

3. If Γ∗j,Ψ∗j ` V ⇐ class and Γ ` σ ⇐ Ψ, then then Γ@j ` V {σ/Ψ} ⇐
class.

Proof

1. Easy.

2. Suppose
Γ ∗ j ` V ⇐ class ` Γ ctx

` Γ, x :j V ctx

We need
(Γ ? k) ∗ j ? k ` V ⇐ class ` Γ ? k ctx

` Γ ? k, x :j?k V ctx

So appeal to lemma and induction hypothesis.

3. Easy.

Abstract stories:
X tried to do something, and succeeded.
X tried to do something, and failed.
Once a thing happened that nobody expected.
X loved Y , but Y did not love X.
X loved Y , but Y did not know.
X loved Y , but Z, powerful, disapproved.
X had a secret, and Y discovered it.
X loved Y , and Z loved Y also, and so Z attacked X.
X did a terrible thing to Y , whom Z loved, and so Z attacked X.
X was angry at Y for no evident reason, confusing Y .
X built a thing, but Y destroyed it.
X was told a thing was impossible by Y , but X did it anyway.
X was told a thing was immoral by Y , but X did it anyway.

75

X looked for a thing, and found it.
X expected Y to do a thing, but Y did not do it.
X said to Y something that did not make sense to Z.
X believed a thing about Y which turned out to be false.
X attacked Y , and eventually X won.
X attacked Y , and eventually Y won.
X taught Y a skill, and Y used it against X.
X taught Y a skill, and Y used for X's bene�t.
A thing that happens routinely, happened for the �rst time.
A thing that used to happen, happened for the last time.
A place was discovered.
X warned Y about a thing, and Y su�ered for ignoring X's warning.
X predicted a thing, and it happened.
X tried to do a thing and succeeded in an unexpected way.

2007.7.26
ICFP was fun, but di�cult. Plenty of secrets remaining.
Hacking on some wavelet-ish code. The idea is to �rst time-divide the

signal f by partitioning it recursively into segments of equal∫
(f ′(x))2 dx

and then treat these as if they were equally long for the purpose of a
Haar transform. The partition naturally results in a (generally unbalanced,
because of the time-division bias) tree whose leaves are single samples, and
doing the Haar is as simple as usual, by propagating sums and di�erences
up the tree.

One can then chop up and rearrange the tree, or scale the Haar co-
e�cients in some way dependent on their depth in the tree or whatever.
Chopping out the top of the tree does a sort of weird high pass, and chop-
ping out the bottom gives a very square-wavy low pass.

2007.7.27
I can �nd little merely type-theoretic evidence that the context restric-

tion operator requires the stringency that proof-irrelevant equality does. I
think the right setup is:

Specify a pointed partial order (P,≤, 0) and operations 	,�. The for-
mer is for terms, the latter for contexts. We require only

x	 x ≥ 0 x� y ≤ x	 y

and
x ≤ y

x ? m ≤ y ? m
m ≥ 0

x ? m ≤ x
(x ? z) ∗ (y ? z) ≥ x ∗ y

76

for ?, ∗ ∈ {	,�}. Some relevant rules:

x :m ΠΨ.v ∈ Γ Γ ` σ ⇐ Ψ m ≥ 0

Γ ` x[σ]⇒ v{σ/Ψ}

Γ	m `M ⇐ A{σ/Ψ} Γ ` σ ⇐ Ψ

Γ `M.σ ⇐ Ψ, x :m A

Wait a second... it seems that (x	 z)� (y 	 z) ≥ x� y leads to

(x	 y)� (y 	 y) ≥ x� y

and since (y 	 y) ≥ 0 we get

(x	 y)� (y 	 y) ≤ x	 y

hence x � y ≤ x 	 y, so that axiom is redundant. This means that if also
always x�x ≥ 0, then the two operations are indistinguishable. In the case
of proof irrelevance, ÷�÷ = ÷ 6≥ 0.

2007.7.28
So in the case of the labelled linear system, I think I can conclude that

the world variables are not proof-irrelevant hypotheses at all, since they are
involved in types in such a way that their equational identity is critical.
What is irrelevant are the proofs that terms belong to certain re�nments.

Here is an alternative-to-HOAS idea:

* : type -> type.
@ : *A -> A -> type.
just : A -> *A.
yes : (just M) @ M.
+ : *A -> *A -> *A.
0 : *A.
inl : C @ N -> (C + D) @ N.
inr : D @ N -> (C + D) @ N.

ctx : type.
c : *ctx -> ctx.
sub : *ctx -> *ctx -> type.
tm : *ctx -> ctx -> type.
atm : *ctx -> type.

lam : tm G1 (c G2)

77

<- atm (G1 + G2)

app : atm G1
<- G1 @ (c G2)
<- sub G1 G2.

nil : sub G1 0.
cons : sub G1 (G2 + G3)

<- sub G1 G2
<- sub G1 G3.

leaf : sub G (just A)
<- tm G A.

or maybe

leaf : sub G (just (c A))
<- (G + A) @ (c G’)
<- sub (G + A) G’.

which obviates the need for tm and atm.
Hmm... I don't really need this high-powered polymorphism at all, do

I? I could just get by with a type *ctx.

Actually this bottoms out in deBruijn Hell anyway.

2007.7.29
Is it possible during uni�cation to maintain the invariant that terms are

well-typed but do not necessarily satisfy the label re�nements?

2007.7.30

I think some equivalence like �A ≡ �(A → p) (p probably holds,
analagous to Deepak's observation that ©A ≡ (A (p) (p (which I
think is in turn equivalent to (A → p) (p). The proof seems to depend
on some focussing reasoning with the fresh atom p being negative.

2007.7.31
Consider uni�cation with metavariables just �oating around, but intrin-

sically contextually typed, like uΨ`a. Variables u may appear in other us'
types, but presume that there is some strati�cation to prevent circularity.
A uni�cation problem P is an unordered collection of equations M =̇ M ′

(or R =̇ R′ or S =̇ S′...) and assignments u← R. A problem P is solvable
if it has at least one ground instance.

78

We speak of simply typed and fully typed instances according to whether
substitutions for uΨ`A have to be merely simply typed or actually of type
Ψ ` A with all the dependencies correct. We are tacitly assuming ev-
erything in sight is at least simply well-typed. A simultaneous grounding
substitution for all the free (uni�cation) variables of a problem (and maybe
for more variables that don't appear?) is an instance if it leaves all equal-
ities true, and is a superset of all the assignments present in the problem.
If a problem has an assignment in it that isn't (fully) well-typed, it has no
typed instances.

A (not-necessarily-ground) substitution for some (maybe not all) ~u of
the free variables of P is a ~u-solution if, after carrying out the substitution,
it is still solvable. Being solvable is obviously identical to having a ·-solution,
namely id. Some observations, though: the set of ~v solutions is completely
determined by the set of ~u solutions when ~v ⊆ ~u. The substitution θ is a
~v-solution precisely when it can be extended to a ~u-solution. This means
that if P and P ′ share a set of ~u-solutions, they also have the same set of
~v-solutions.

We will impose on the design of the uni�cation algorithm the constraint
that if P 7→ P ′, then P and P ′ have the same set of FV (P)-solutions. If we
make a further step from P ′ to P ′′, they will have the same set of FV (P ′)-
solutions, but a fortiori, the same set of FV (P) solutions, since the set of
free variables monotonically increases.

De�ne FV ∗(P) to be the free variables of P not counting occurrences of
variables on the left of ←, which are counted in FV (P). We also maintain
the invariant that if u←M ∈ P , then u 6∈ FV ∗(P).

With all the above we should be able to show that the algorithm pre-
serves sets of simply typed instances of uni�cation problems, and so we
can read o� at the end what the solution is. If we care about dependent
well-typedness, then maybe we can chew through the instantiation, making
some other determinations about what must be equal for it to be well-typed.

However, it ought to be the case that uni�cation also preserves typing.
A uni�cation problem P is well-typed if all of its equations and assignments
are P -well-typed. An equation is P -well-typed if it can be given a context
and a type such that, for any instance of P , both sides of the equation have
the (substituted) type in the (substituted) context. An assignment is P
well-typed if for any instance of P its right-hand side does have the (substi-
tuted) type in the (substituted) context, both drawn from the contextual
type of the variable on the left.

There's a question here of whether I mean to quantify over all (simply-
typed) instantiations or just the dependently well-typed ones. I think I can
get away with the former, for it is a stronger thing to know once I'm �nished
with uni�cation and need to read o� the individual variable instantiations,

79

and I suspect it is still preserved as an invariant.
Inversion should look like

N [σ]−1 = N ′

P ∧ u[σ] =̇ N 7→ P [N ′/u] ∧ u← N ′

No, wait, I need to think only about well-typed instantiations when
de�ning well-typedness of uni�cation problems: speci�cally, to be able to
establish that the initial problem is well-typed.

2007.8.1

So uni�cation should preserve sets of (simply-typed, from which follows
typed) uni�ers and preserve well-typedness.

Let us claim that the rule

R[σ]−1 = R′

P ∧ u[σ] =̇ R 7→ P [R′/u] ∧ u← R′

preserves uni�ers for a set that does include u. That is, for any substitution
θ containing Rs/u, we get the equivalence of |= Pθ ∧ Rs[σθ] =̇ Rθ and
|= P [R′/u]θ ∧ Rs =̇ R′θ. I guess I am supposing that R itself does not
have any of the free variables of the simultaneous substitution θ. The
latter expression breaks down anyhow into |= Pθ[R′θ/u]∧Rs =̇ R′θ (again
implicitly assuming u not free in the output of θ) which becomes just |=
Pθ ∧Rs =̇ R′θ because substituting twice for u has no e�ect.

Now for this step to go through it must be that σ is a pattern substitu-
tion, so hitting it with θ does nothing. We must determine that Rs[σ] =̇ Rθ
and Rs =̇ R′θ have the same solvability. We just need as a lemma that
if R[σ]−1 = R′, then in fact R = R′[σ]. This means we are comparing
Rs[σ] =̇ R′θ[σ] and Rs =̇ R′θ.

The properties of pattern substitutions that make this true are that they
commute with grounding metasubstitutions θ′, and that they are injective.

Why does this step preserve typing? To suppose the antecedent is well-
typed is to suppose that there is a Γ and a such that for all well-typed
grounding substitutions θ that satisfy all the equations in P , we have

Γθ ` (u[σ])θ ⇒ aθ Γθ ` Rθ ⇒ aθ

and need that
Ψθ ` R′θ ⇒ bθ

for Ψ ` b being the type of u ∈ ∆. We seem pretty stuck here!

80

Looking at Conal Elliott's thesis, it seems that he does resort to a strict
partial order on uni�cation equations, not just variables.

The problem I have understanding this idea is that even if I take the
substitution that resolves only the equations antecedent to the current one,
it still might instantiate u and leave me without explicit typing information
about σ that I could pump through the de�nition of inversion and get
something reasonable out. Could I maintain the invariant that the variables
in an equation are disjoint from the ones required to be instantiated to
account for its ill-typedness?

2007.8.2
Here's another uni�cation idea. De�ne new typing judgments annotated

by a subscript P so that Γ `P M ⇐ A means `M has type A modulo
P '. Every particular rule remains exactly the same except for the synth-
checking boundary where I say

Γ `P R⇒ a a ≡P a′

Γ `P R⇐ a′

where a ≡P a′ means: for all substitutions θ that leave P solvable, aθ = a′θ.
Now the invariant to be maintained is: (1) everything in sight is simply-

typed. (2) If M =̇ N is part of the uni�cation problem P , then there is a
Γ and A such that Γ `P M ⇐ A and Γ `P N ⇐ A. (3) If u← R is part of
the uni�cation problem P , and u : Ψ ` a ∈ ∆, then Ψ `P R⇒ a.

The invariant for equations of synthesizing things is, I suppose, that
they might synthesize to di�erent things, but they will wind up equal.

To justify
R[σ]−1 = R′

P ∧ u[σ] =̇ R 7→ P [R′/u] ∧ u← R′

We get by assumption that

∆, u : Ψ ` a; Γ `P ′ σ ⇐ Ψ

∆, u : Ψ ` a; Γ `P ′ u[σ]⇒ a[σ]

and
∆, u : Ψ ` a; Γ `P ′ R⇒ a′

where P ′ = P ∧u[σ], and we are assuming a[σ] ≡P ′ a′. Now if R′ is the only
term that can possibly satisfy u[σ] =̇ R, and it should be by injectivity of
pattern substitutions, then we also have, transferring from P ′ to P , (noting
that u can't possibly occur in a or σ)

(∆; Γ `P σ ⇐ Ψ)[R′/u]

81

(∆; Γ `P R⇒ a′)[R′/u]

a[σ] ≡P a′[R′/u]

Now σ is a pattern substitution and R shouldn't contain u by the occurs-
check, so we should be able to invoke some lemma like

Lemma 0.16 Suppose ∆; Γ `P σ ⇐ Ψ and ∆; Γ `P R ⇒ a′. If R[σ]−1 =
R′, then ∆; Ψ `P R′ ⇒ a′′ such that a′′[σ] ≡P a′.

to �nd that
(∆; Ψ)[R′/u] `P R′ ⇒ a′′

such that a′′[σ] ≡P a′[R′/u] ≡P a[σ]. Again, pattern substitutions are
injective, so a′′ ≡P a, as required.

2007.8.3
Summary of things to mention to Frank:

• Contextual stuff. By restricting all variables to have contextual
instead of functional arguments, both the substitution and identity
theorems go through nicely.

This tends to put some strong pressure on Πs and contexts to be
precisely the same.

• Base-type polymorphism stuff. We can construe atomic types
and atomic terms as belonging to the same syntactic category, likewise
unifying type- and kind-level Π. Variables of classi�er `type' can
occur in the context, obviating the need for signatures. They can be
instantiated by base types only.

This can be extended kinds, hyperkinds, etc., generally to a hierarchy
of universes.

This tends to put some pressure on types and objects to behave uni-
formly.

• Multimodal stuff.

By reasoning abstractly about colon-decorators, we �nd that we need
some operations 	 and � satisfying some usual monotonicity, anti-
monotonicity, and compatibility axioms like

x ≤ y

x ? m ≤ y ? m
m ≥ 0

x ? m ≤ x
(x ? z) ∗ (y ? z) ≥ x ∗ y

and also to get the identity property we need x	 x ≥ 0 which entails
x� y ≤ x	 y.

82

The usual multimodal stu� satis�es this with two extra modes ⊥ and
> to represent things removed from the context, and things promoted
to be accessible by removed things. These two look exactly like proof
irrelevance by themselves! Except even for judging context validity,
we could take � = 	 and allow irrelevant hypotheses to have types
in the promoted context. This corroborates the idea that the proof-
irrelevant modality (and variants of it) have an independent existence
from the proof-irrelevant notion of equality.

• Classical version of LF.

Using the contextual multi-modal approach, it is fairly easy to syntac-
tically prove the correctness of both the double negation and modal
translations back and forth between intuitionistic and classical logic.
It seems that this should be extensible to dependent types more
cleanly than the old labelled approach. The novelty that I missed
before is not worrying about boxes as independent propositional op-
erators, but only allowing them as `parasites' on →.

Although it's not clear what the notion of well-formed type is in any
proposal I can come up with, it seems like `classical' LF wants to have
a context of true or false assumptions where the basic type is some
kind of Σ. However, true assumptions of Σ should just automatically
decompose. The only interesting thing is assumptions that Σ is false,
right? Could I get by with true and false hypotheses at base type,
and false Σs? Seems unappealingly asymmetric.

Wait, no, even the true Σs carry modality information that makes
them interesting on the right. This is what makes classical modal logic
not pervasively asynchronous, and precisely what makes it expressive
enough to simulate intuitionistic logic.

• Unification. There doesn't seem to be any problem with `circularity'
in the typedness-justi�cation of uni�cation equations. Indeed the
equation u =̇ c u : p should be okay if u : o and c : o → o, precisely
because it has no solutions.

However, rigging up `P seems kind of logical-relationsish, because
I'm making what looks like a syntactic de�nition of something that
nonetheless has real powerful universal quanti�ers down at the ≡P

leaves.

* * * * * *

Circularity in the dependency graph among variables, however, seems
really sketchy. It's not clear how complete pattern uni�cation is,

83

anyway, so I'm not personally bothered by saying that ∃w : o, u :
a w → o, v : a w.(w =̇ u v) can throw a `constraints remaining' sort
of error.

It looks like we want to extend the occurs-check for w down into the
type of u and v somehow, but not in order to fail, just to postpone. If
that check succeeds, it means that all the variables in the instantiation
for w can be moved in ∆ to the left of w.

2007.8.4
Actually, why not allow cyclic dependent types? When I write Ψ I can

say to myself that what I really mean is something like Ψs :: Ψd where �s

means `take only the variables and their simple types' and �d means `take
only the dependent types, as a list'. This way Ψd only refers back to its
left.

The substitution principle is something like:
If Γ ` J and Γ ` σ ⇐ Ψ then (Γ \Ψ)θ ` Jθ.

Simple Contexts Γ ::= · | (Γ, x : Γ)
Contexts ∆ ::= Γ::Ψ

Type Lists Ψ ::= · | Ψ, V
Term Lists σ ::= · | σ,M

Types V ::= Π∆.v
Terms M ::= λΓ.R

Base Types v ::= R | type
Atomic Terms R ::= x[σ]

∆ + Γ::Ψ ` R⇒ v

∆ ` λΓ.R⇐ ΠΓ::Ψ.v

x::(ΠΓ::Ψ.v) ∈ ∆ ∆ ` σ ⇐ Ψ{σ/Γ}

∆ ` x[σ]⇒ v{σ/Γ}

∆ `M ⇐ V ∆ ` σ ⇐ Ψ

∆ ` σ,M ⇐ Ψ, V ∆ ` · ⇐ ·

Simple typing:

Γ,Γt ` R⇒

Γ ` λΓt.R⇐ Γt

x : Γs ∈ Γ Γ ` σ ⇐ Γs

Γ ` x[σ]⇒

Γ `M ⇐ Γt Γ ` σ ⇐ Γs

Γ ` σ,M ⇐ Γs, x : Γt
Γ ` · ⇐ ·

84

Γ ` Ψ ctx Γ ` V ⇐ class

Γ ` Ψ, V ctx Γ ` · ctx

Γ,Γ′ ` Ψ ctx Γ,Γ′ ` v ⇒ class

Γ ` ΠΓ′::Ψ.v ⇐ class
Context validity:

∆ + Γ::Ψ ` Ψ ctx ∆ + Γ::Ψ ` v ⇒ class

∆ ` ΠΓ::Ψ.v ⇐ class

2007.8.5
Negative deBruijn indices don't seem to work the way I want them to

with respect to these contexts, sadly. However they seem �ne for express-
ing constants in the signature should I choose to have one, since they're
invariant under shifts.

2007.8.6
An interesting property of the mean µ of some set of points x̄ ∈ Rn is

that it is the x that minimizes the second moment about x. For set to zero
the expression

d

dx

∑
i

(x− xi)2 =
∑

i

2(x− xi)

and you get

nx =
∑

i

x =
∑

i

x̄i

so x = 1
n

∑
i x̄i = µ.

This allows a generalization of mean and variance to distributions on
graphs, metric spaces, simplicial complexes, etc. A point in a metric space
is a mean if it minimizes the second moment about that point; the variance
is the second moment about a mean.

2007.8.7
The ability to have circular dependencies seems to obviate even the need

to have universes in the language. Just allow

Γ ` R⇒ v

Γ ` R⇒ class

and start your signature o� with, essentially, type : type!

85

2007.8.8
Doing cut-elimination for the proof irrelevant modality by itself, it seems

that an idempotent version of it is easier to show to be sound. The non-
idempotent version still is, but it depends on the absence of decompositions
at irrelevant modality, something that precisely the idempotent one allows;
so that if they are mixed, (and share the same judgmental notion of ÷)
suddenly the non-idempotent is unsound. One might be able to get them
in the same system by splitting ÷ up into two judgments, one that permits
decomposition under it, and one that doesn't.

2007.8.9
Noam pointed out to me Dummet's example of

A ` C B ` C

Γ, A@B ` C
as a connective that's sound only in the absence of other connectives

like ∨. I wonder what its soundness proof looks like? I can't reconstruct it.

Even without completely focussing the system, I think introducing cyclic
multi-Πs to LF would work �ne. In fact, they would only really need to be
used during abstraction for implicit arguments.

2007.8.10
Here is an attempt at a higher-order pattern uni�cation algorithm. We

take for granted the lack of ordering of uni�cation equations and variables.
Postulate a dummy variable, call it _τ , at each simple type τ . It's

actually the thing that pops out during pattern inversion when it's not in
the image of the substitution. Consider it `outside the PER' in the sense
that it's not even considered equal to itself. The invariant on uni�cation is
that we seek well-typed closed things to put in evars, so we won't ever put
_ in them, (at least not in closed terms) because it's also not well-typed.

Faced with
u[σ] =̇ M

where σ is a pattern, we reason like this:
First of all, if σ has any _s in it, (I guess I'm allowing _ into the

pattern fragment, but I can weasel out of this by describing this as a move
on substitutions that are all-but-patterns, except for precisely the presence
of _) replace u with something that projects them out. We can do this,
because in the absence of any non-pattern noise, the _ really would appear
on the left and induce irre�exivity of the PER.

86

If M has u at the top with a pattern substitution, do intersection. If
it's not a pattern on the right, postpone.

Now consider the occurrences of u on the right. If there are none, great,
carry out inversion (creating _s) and execute the substitution throughout
the rest of the uni�cation problem. We must also e�ectively add the equa-
tion M =̇ M , but I expect this to be optimized away in most cases. If M
doesn't have any occurrences of _, then we do indeed get to transform it
into >. Otherwise, we wait for some instantiation to bring it conclusively
into (or out of, possibly? I suppose I could wind up with _ =̇ _ and have
to fail) the PER.

If there's a rigid occurence of u somewhere, fail. If there's only �ex
occurrences, postpone.

That's it!
One thing that confuses me is it seems like Twelf should already have

to cope with the �ex-occurs-check postponement, even though the left-
hand side is a pattern. Why doesn't this break the invariant of associating
postponed equations with evars that have non-pattern substitutions?

* * * * * *
Yeah, considering both ways that u[x] =̇ x ∧ u[_] =̇ u[_] could go

depending on which equation was attacked �rst, we get _ =̇ _ in either
case, correctly failing.

The other thing is, if I ever get _ in a rigid position during inversion,
I pretty much know to fail. So it's really only an extension of the pattern
language, (much like η-short variables) not of the term language.

2007.8.11
I think I could do cyclic types in an otherwise normal LF setting by

having a pairwise cyclic Σ, like

Σ(x, y) : (A,B)

with rules like

Γ `Mi ⇐ [M1,M2/x1, x2]Ai (∀i)

Γ ` 〈M1,M2〉 ⇐ Σ(x1, x2):(A1, A2)

Γ, x1 : A1, x2 : A2 ` Ai : type (∀i)

Γ ` Σ(x1, x2):(A1, A2) : type

Γ ` R⇒ Σ(x1, x2):(A1, A2)

Γ ` πiR⇒ [πiR/xi]Ai

87

Some ideas for how to cope with a module system.

Contexts Γ ::= L | {¯̀. x̄ : C̄} |
Γ where x : V = M | Γ1 and Γ2

Terms M ::= λ¯̀. x̄.R | [¯̀= M̄]
Types V ::= ΠΨ.R | Γ

Classi�ers C ::= V | SV (M) | Sctx(Γ)
Atomic Terms R ::= L[¯̀= M̄]

Long Identi�ers L ::= x | L.`

2007.8.12

To do PCA on a dataset matrix ~x that has individual observed data-
points as rows (centered so the mean is zero) look at the eigenspace decom-
position of the covariance matrix x>x. The eigenvectors are the principal
components, and the eigenvalues are the variances.

2007.8.13
To reconcile labels with the style of uni�cation I've been doing, it might

be necessary to attach a label to each equation and maintain the typing
invariant with respect to it.

A priority is to �gure out which invariants I can actually get away with.

2007.8.14

De�ne a world-parameterized erasure A//p of HLF types into

Simple Labelled Types τ ::= p | τ1 → τ2 | ∀α.τ

by
(Πx:A.B)//p = (A//ε)→ (B//p)

(∀α.A)//p = ∀α.(A//p)
(↓α.A)//p = A[p/α]//p
(A@q)//p = A//q
(a · S)//p = p

It's pretty easy to de�ne typing judgments for τ ; I would conjecture
the well-typed HLF terms are exactly the well-typed LF terms that satisfy
this typing judgment also. This separation might make uni�cation easier
to talk about.

2007.8.15
I am leaning towards the equations themselves not being labelled, then;

the uni�cation problem proper exists in the LF-world, and the typing prob-
lems exist in simpli�ed HLF. The way they communicate is through (term-
only!) instantiations of existential variables, which have di�ering types (but

88

the same ultimately simpli�ed) typs across the di�erent parallel computa-
tions.

2007.8.16
So if I just create type-checking constraints at inversion time, they de-

compose sensibly until they get to evars, at which point we have more
suspended typechecking constraints. The only way we should ever have
some left over is if there are free term variables remaining � otherwise, all
the uni�cation of labels should come back either true or false.

Unless perhaps it's sensible (and/or required) to maintain connected
constraints through multiple phases of logic program execution.

2007.8.17
It's still bothering me that I don't know what the types would be, really,

in a classical version of LF. The point of double-negation translation is that
all the types you really have access to are either ¬¬A∗ or ¬A∗ for some
translated A∗, but then that would seem to imply one level up that the
only kinds you have access to are ¬¬K∗ and ¬K∗, which I don't know how
to make sense of. Maybe I have to go back and suppose that `type' is really
baked into the system somehow.

2007.8.18
In the event of working in the LF fragment of HLF, doing HLF uni�-

cation should cause little to no performance penalty, since label-uni�cation
equation creation should take place in parallel with inversion, and the only
equations that arise will be ε =̇ ε.

2007.8.19
The theorem corresponding to the de�nitions from the 14th is:

Theorem 0.17 Γ `HLF J [p] i� Γ− `LF J− and Γ//ε ` J//p.

for some suitable notion of erasure �− and proof system for types sim-
pli�ed with //.

2007.8.20
Reading some work of Linger and Sheard. They provide at a certain

point as a tempting non-example the signature

nat ÷ type
+ : nat→ nat→ nat
vec ÷ Πx÷ nat.type

append : Πn,m÷ nat.vec n→ vec m→ vec (n+m)

This doesn't work because + wants its arguments to be relevant. I'm
trying to see how I would do this in a re�nement system. I would start out

89

just having vec : type, and then re�ning it to something like vecn : nat →
type, but these are of di�erent shapes. Does this make sense in william's
system? I would also need two extra ∀s to cover the way that append is
re�ned.

I keep coming back to the notion that Ref(A) should be a kind if A is
a type.

Γ ` A : type

Γ ` Ref(A) : kind

Γ ` r, s : Ref(A)

Γ ` r ∧ s : Ref(A)

Γ ` > : Ref(A)

Γ, x : B ` r : Ref(A)

Γ ` ∀x:B.r : Ref(A)

Γ ` r : Ref(A) Γ, x : A :: r ` s : Ref(B)

Γ ` Πx:r.s : Ref(Πx:A.B)

Γ ` R⇒ Ref(a · S)

Γ ` R⇐ Ref(a · S)

And then vecn would be like nat→ Ref(vec) and append would be

app : vec→ vec→ vec :: ∀n.∀m.∀d:plus n m p.vecn n→ vecn m→ vecn p

2007.8.21
A sketchy idea going back to some feelings I had about linear algebra and

variable-for-variable substitution, connected also to `�rst-class underscore'
in uni�cation:

Imagine that terms are applicative trees � without much loss, let's just
say lists � of variables. The set of free variables of a term is kind of like
the vector space that a vector lives in. E.g. consider a term that is abc.
If we want to substitute a for b, we'll cons up a substitution that is the
identity on a and c. For clarity, let's make the substitution totally change
the world. We'll substitute A for b, A for a, and C for c. We want to make
this substitution a linear function, and since the set of linear functions
is itself a linear space, this should somehow be a sum of [A/b], [A/a], and
[C/c]. Each of these should further break down into a `recognition' covector
and `generation' vector. A covector for a transforms abc into the bitstring

90

(more generally �eld-element-string) 100 and then that `scalar' times the
vector A will be A00. The operation that is glueing together these thingies
is linear, (not, for instance, bilinear) so that A00 + 0A0 + 00B = AAB.

I really don't know how to tie this in with higher-order terms, though.
λ does funny things.

2007.8.22
Okay, so in uni�cation each evar has a type and a context and a label.

I want to believe that

∃u :: Γ ` a[p] `M =̇ N

is true i�

∃u :: Γ− ` a− `M =̇ N

and also

u :: Γ//ε ` a//p; Γ//ε ` u : a//p

so at each evar down in the term I only have a substitution consisting of
terms. The erasure �− actually knocks world variables out of the context.
Really all I ought to do to show decidability of typing is to �rst show the
split of typing into LF typing and world checking, and then describe residual
uni�cation over the latter.

2007.8.23
Raising is a bit sneaky. It's intriguingly unclear when I can do it. Con-

sider the old equation

Z ˆx =̇ f ˆ(X x)ˆ(Y x)

for Z linear but X,Y not. I get out that Z := f (X 1) (Y 1) and so it
must be that α ` f (X 1) (Y 1) : α. As a consequence I'll make up two
new world variables p, q depending on α and I'll �nd that α ` X 1 : p and
α ` Y 1 : q, and at the nil I'll get α =̇ pq.

* * * * * *
Irritatingly, `compiling' linearity into labels obscures some invariants

that would I think be otherwise more evident in the original linear setting.
It may be that I can express them and e�ciently detect them in terms of
labels, but it's not obvious yet that I can.

91

Some more coherent thoughts on linear algebra and the lambda calculus:

Normal Terms M ::= R | λx.M
Atomic Terms R ::= kH | R N

Heads H ::= c | x | 1

where k is some �eld element. `Scalar terms' are those all of whose heads
are 1, and regular terms never have 1 for heads. We can get a scalar term
from a term and a variable by an operation M(/x):

(λy.M)(/x) = λy.(M(/x))
(RN)(/x) = (R(/x)) (N(/x))
(kx)(/x) = k
(ky)(/x) = 0
(kc)(/x) = 0

We can also take a scalar term and a head and make it into an ordinary
term. We just go through and multiply all the heads by the given one. We
write this as M(x).

Now M(/x)(y) is kind of like [y/x]M , except a lot of things go to zero.
We need to de�ne MC, which preserves all the constant stu�.

(λy.M)C = λy.(M((/y)(y) + C))
(RN)C = (RC) (NC)
(kx)C = 0
(kc)C = c

2007.8.24
Summary of things to mention to Frank:

• Type Validity. The issue of which atomic expressions should be
well-formed is clear, and this is all I need for HLF metatheory to
make novel sense. The question of which function types exist is still
less clear.

• Mutual Recursive Dependencies. This seems to clear up the
abstraction bug.

• Term PER for Unification. This seems like it might clear up the
approximation-step bug.

2007.8.25
The Linger & Sheard thing is still gnawing at the fringes of my attention.

The very fact that λx.x `irrelevantly' has type Πx÷ o.o is highly peculiar,

92

yet it seems to hang together ok as a logic without worrying about erasure
or equality or whatever.

This is yet a di�erent system, isn't it, from the one where irrelevance is
idempotent? It sure seems to be. I can't seem to prove ([[o]→ o]→ p)→ p
in Awodey-Bauer.

2007.8.27
Game idea, with a competition structure akin to core wars, but a more

cellular programming model: your task is to lay out little laser turrets and
armor on, say, a 5 by 10 grid oriented vertically. The laser turrets each
have some NESW orientation, and can also be armored. An armor cell is
basically empty space plus some number of units of armor, and a gun can
have the same armor added to it at the same cost. Say armor costs 1pt
each unit, and adding the gun itself is an extra 1pt, but probably at least
one unit of armor is mandatory for any occupied cell (though cells can also
be left unoccupied) so a gun has a minimum cost of 2pts. Presumably there
is some spending limit on points.

The player also speci�es an order in which all the active things (in
this case just the guns) execute. To compete, both players lay down their
machines horizontally next to each other (with one �ipped) and take turns
executing the next gun in their queue. (If some get destroyed then later
ones move up in the queue) If a gun �res at a player's own gun, the energy
is captured and stored. The targetted gun will then �re a shot of `more
energy'. Each shot defaults to one energy unit, but received shots are
added to that. If the energy of a shot equals or exceeds some bit of armor
or enemy gun, then the target is destroyed, otherwise it �zzles. If the energy
reaches the far side of the playing �eld, it scores points equal to the energy
times some number that decreases with the height above the `ground' at
the bottom.

Turns are interleaved, but we can just average the two cases where each
player has the initiative.

2007.8.28
Consider personality testing. Trying to come up with a nice abstract

setting that re�ects its measurement problems su�ciently. Suppose I have
a set of questions Q and a set of persons P . I can imagine that the universe
hands me a function t : P × Q → R. Now if I have a distribution d over
P (say, the set of people I am likely to encounter and interact with) I
can start to talk about correlation of outputs of di�erent questions. If I
have q1, q2 then maybe it's meaningful to think about the covariance term∑

p d(p)t(p, q1)t(p, q2). But then again I probably should make sure that
my data is mean-centered and varaiance-scaled, and so the distribution d
plays an essential role in determining correlation.

93

The question I want to ask is something like: suppose Q is closed under
linear combinations. (Hopefully the linear structure onQ I intend is obvious
� construe it as the dual space of P with t acting like application) Can we
discover any intrinsic structure in P without any guarantees that our set
of questions might be wildly redundant?

2007.8.29
I �nd myself staring at the counterexample to Pfenning '01 that looks

like

o : type. j,k : o.
a : o -> type.
b : {x:o} a x.
c : {x/o} {y/a x} o
c j (b j) =? c k (b k)

and thinking that it could be `�xed' by a encoding into canonical irrelevant
LF maybe by using sigmas to package up collections of arguments that
are all irrelevant. The thing that threatens to break this is of course the
possibility of interleaving irrelevant and relevant arguments.

2007.8.30
The damning thing about the above example � and I'm pretty sure I

discovered this a long time ago � is that you can't replace an irrelevant
subterm with another at the same type and retain well-typedness of the
result, or even typability with respect to other irrelevant changes. Take the
signature

o : type. j,k : o.
a : o -> type.
b : a j.
c : {x/o} {y/a x} o

and consider c◦j◦b. It's well-typed, but c◦k◦b is not, nor is there anything
we could replace b with to make it well-typed. Contrarily in a well-set-up
system I should have a lemma like

Lemma 0.18 If Γ, x÷A ` B : type, and Γ⊕ `M1,M2 ⇐ A, then for any
N we have Γ ` N ⇐ [M1/x]AB i� Γ ` N ⇐ [M2/x]AB.

Indeed I might have

Lemma 0.19 If B1 ≡i B2, then for any N we have Γ ` N ⇐ B1 i�
Γ ` N ⇐ B2.

Let me try to prove that. I have to generalize at least to

94

Lemma 0.20 Suppose Γ1 ≡i Γ2 and A1 ≡i A2.

• If Γ1 ` N ⇐ A1 then Γ2 ` N ⇐ A2.

• If Γ1 ` R⇒ C then there exists C ′ ≡i C such that Γ2 ` R⇒ C ′.

• If Γ1 ` S : A1 > C then exists C ′ ≡i C such that Γ2 ` S : A2 > C ′.

This probably requires some further well-typedness assumptions.

An attempt at the modal translation from intuitionistic multimodal
LF into classical multimodal LF: A judgment Γ ` M ⇐ V is taken to
Γ�, k :0t V

� `M�
k ⇓.

(x :n V)� = x(n+1)f : V �

(ΠΨ.v)� =
∧

(Ψ�, k :0f v
�)

(λΨ̂.R)�
k1

= k1[Ψ̂, k2.R
�
k2

]
(x[σ])�

k = x[(y.y . k).σ�]
(M.σ)� = (k.M�

k).σ�

R� = t.R�
t

The opposite translation takes Γ ` E ⇓ to Γ∗ ` E∗ ⇒] and looks like

(x :nb V)◦ = x :n ¬(V ∗)
(x :nt

∧
Ψ)∗ = x :n ¬¬(Ψ∗)

(x :nf

∧
Ψ)∗ = x :n ¬(Ψ◦)

(x :nt v)∗ = x :n v∗

(x :nf v)∗ = x :n ¬(v∗)
(t.E)∗ = mktp[E∗]

(x . y)∗ = y[x]
(x[Ψ̂.E])∗ = x[λΨ̂.E∗]

(y.E)∗ = λy.E∗

where] : type and mktp : ((type →]) →]) → type are declared, and
¬V = V →] and ¬Ψ = ΠΨ.].

2007.8.31
A person who recommends a certain lifestyle, or habit, or methodology:

they had better follow it themselves, else they are a hypocrite. Yet they
may still be criticized for recommending it, merely because it is that which
they follow. But the truth may be: they are merely following it, because
they have come to the belief that it is appropriate.

2007.9.1
I'm leaning back towards believing in the validity of the following sort

of move in uni�cation:

95

(X[σ] = Y [· · · (c ·X[σ′]) · · ·]) 7→ (X ← Y [· · · (_) · · ·])

The general claim is that I can rewrite a term with a rigid head, which
contains the variable being inverted in a rigid position, with underscore.

2007.9.2
Trying to make the thing from yesterday more formal. I think I need

something like two mutually-recursive inversion stages, though it's possible
it might be three. The top-level inversion, when it encounters a variable,
will apply top-level inversion to each of that variables arguments, will it
not? This is the notion that �nding c · X while inverting for X should
be replaced by _ even if it occurs deep within a term. If ordinary (top-
level) inversion reaches a constant on the other hand, we get to go to rigid
inversion perhaps.

Okay, so if ordinary inversion encounters the variable itself, we are stuck,
unless we are at the very top-level, and both variables have pattern substi-
tutions, in which case we can do intersection. If rigid inversion encounters
the variable itself, it `throws an exception' back up to the last place ordi-
nary inversion was called, leaving an _ there. If rigid inversion encounters
another variable, then it switches to regular inversion.

2007.9.3

u[ξ1] =̇ u[ξ2] 7→ u← v[ξ1 ∩ ξ2]
u[ξ] =̇ M 7→ u←M [ξ]/u

f ∧M [ξ]/u
f [ξ] =̇ M

(λx.M)[ξ]/u
∗ = λx.(M [x/x.ξ]/u

∗)
(x · S)[ξ]/u

∗ = y · (S[ξ]/u
r) if x/y ∈ ξ

(x · S)[ξ]/u
∗ = _ if x 6∈ cod ξ

(c · S)[ξ]/u
∗ = c · (S[ξ]/u

r)
(v[σ])[ξ]/u

∗ = v[σ[ξ]/u
f] if v 6= u

(u[σ])[ξ]/u
r = _

(u[σ])[ξ]/u
f = fail

2007.9.4
Ultimately the thing that justi�es a move like

u[ξ1] =̇ u[ξ2] 7→ u← u′[ξ1 ∩ ξ2]

is just the fact that R[ξ1] = R[ξ2] i� there exists R′ such that R = R′[ξ1∩ξ2].
All the business about the rest of the substitution vanishes because ξ1, ξ2 are
patterns, and the remaining constraints in the uni�cation problem go away

96

because either as the conclusion or assumption we have R = R′[ξ1 ∩ ξ2],
which is the only di�erence between them.

Also I think we need only consider closed instantiations as the partial
step before we talk about solvability of uni�cation problems in the de�nition
of ū-solutions. This simpli�es things a lot.

2007.9.12
There's a very torsor-ish problem with news reporting: it's hard to

genuinely say that a certain sort of story is over- or undereported, although
it's easy to say that one source reports more of a certain kind than another.

2007.9.14
Type inference in HLF is subtler than I expected. Maybe I want to do

it before η-expansion to allow type equality to guide my hand more?

2007.9.15
Wrote some code to visualize the set of words in a corpus, plotting

log frequency against average position of the word in a sentence. I tried
both taking an average of normalized word position (in the sense that 0 is
beginning of a sentence and 1 is the end) and nonnormalized (just take the
index of the word in the sentence, 0 means �rst word, 1 means second, etc.)

2007.9.16
Writing Bresenham's Algorithm in ML is relatively pleasant. I can

interpose functions in front of the pixel-drawing routine to easily enforce
monotonicity invariants that make the inner loop easier to write.

2007.9.21
Type inference in HLF is still quite tough. Doing it before η-expansion

seems rather ugly. Three possibilities come to mind:

1. Allow for some extra term construct that signi�es that η-expansion
stops in a particular place.

2. Do type inference based on quantifying the variables that appear in
the context or result.

3. Do type inference based on the worlds of the arguments.

The chief problem is that the quanti�cation pre�x of a free variable's
type is not uniquely determined by the context in which it appears. Con-
sider for instance

c : {p:w} ({b:w} {g:w} o @ (b * g)) -> o @ a -> type.
k : {a:w} c X X.

and also think about

97

c : (a -o D -> B -o E) -> type.
(= c : ({a,b:w} A @ a -> D -> B @ b -> E @ (a * b)) -> type.
k : c X.

Another notable issue is that apparently the lattice of re�nements has a
bottom, so why not just always choose that? (Partial answer: because then
you would fail coverage. Fewer actual closed terms would actually satisfy
the re�nement, so fewer things would cover)

Something like

⊥(τ1 → · · · τn → τ) = ∀α1, . . . , αn, α.>α1(τ1)→ · · · → >αn(τn)→ τ@α

>p(τ1 → · · · τn → τ) = ⊥(τ1)→ · · · → ⊥(τn)→ τ@p

Oh, but wait, we want (something analagous to) the most general uni-
�er, not the least. So this is backwards. Nonetheless, I also have a top,
which is erasing all the ∀s and setting everything to ε.

* * * * * *
I am mistaken about the >; it's only so for closed terms. If you have

world variables, it is not so. The de�nition of >p illustrates that if you
allow free world variables in the `answer' then you do indeed again have a
top. For all I know, all intersections also exist, but I doubt it.

More cases to meditate on:

c : {p:w} o @ p -> type.
k : {a:w} c X -> o @ a.

I think the right reconstruction for k involves an abstracted free variable:

k : {a:w}{b:w} {X:o @ b} c X -> o @ a.

(If we de�ne subtyping by η-expansion, then a single η-expanded occur-
rence of a free variable actually does have as its most general type the type
that it gets checked against, basically by de�nition.)

c : ({a,b:w} a -> a -> b) -> ({a,b:w} a -> b -> b) -> type.
k : c X X.

seems like X should reconstruct as (a:w a -> a -> a) so it seems some
uni�cation is going on.

2007.9.25
Frank pointed out that things get even hairier for doing re�nement-

intersection-by-uni�cation if there are nested universal quanti�ers. I ought

98

to investigate this. Apart from this issue, I fully expect that there are not
always MGU-like universal things in the re�nement lattice, precisely be-
cause there are not MGUs always in uni�cation. A speci�c counterexample
there would be nice.

2007.9.26
Got an antialiased polygon �ll routine working okay in ML.

2007.10.2
Had a thought about the redundancy elimination stu�; could the gap

between synth and checking be �lled by optional type indices rather than
type ascriptions?

2007.10.3
Our sense of history is ridiculously underdetermined. Without being

able to have a conversation with the past, we claim inference of more about
it that I would feel comfortable inferring from even a conversation.

2007.10.4
I like and feel like I ought to imitate Scott Aaronson's research state-

ment. It's not merely a blurby `I aim to do such-and-such' but a nice,
thorough assessment of the open problems he cares about, why he cares
about them, what they mean, what's been done about them, and what he
hopes to do about them.

2007.10.6
In practice, the way I do logic risks approaching the study of arbitrarily

recursively de�ned predicates, but some of them certainly seem more `log-
ical' in �avor. They are those that act as consequence relations, ones that
establish a relation with a transitive and re�exive �avor (even if the relation
is not actually binary), i.e. those that admit cut and identity. Moreover
we expect a certain modularity from logical connectives, that each has its
meaning explained independently. Sources of great worry:

1. Why can one get away with shoving things into the `judgmental part'
of thie logic?

2. How much of this can we fairly get away with?

3. What is the scope of the things we can fairly call `judgmental'?

4. There is a similar tradeo� between the environment and the sub-
ject being in control over which OO-ish and type-theoretic FP design
habits di�er. The camp I'm in says: a piece of code should absolutely
determine what it o�ers to the outside world, while the aspects phi-

99

losophy says that code should be available for manipulation by the
environment.

2007.10.9
Watched a BBC video about Buddhism. A bit �u�y, but interesting.

Again I am struck with the thought of: yes, it might be useful to prac-
tice mindfulness towards certain ends, but why accomplish those ends? I
feel that Buddhism takes for granted the, ahem, desirability of ending suf-
fering, and honestly, I'm quite willing to personally accept that, but this
seems a kind of back-pedalling retcon as usual. What happens when we,
hypothetically, eliminate the desire to eliminate desire?

2007.10.15
Digesting Linger's newer paper. He seems to have promotion properly

sorted out now, but types are still divides-type in many places, and that
seems very strange to me.

2007.10.16
Big questions:

1. What is the role of logic?

2. What is the role of the judgmental methodology?

3. What is the connection between that and category theory?

4. ...Multicategories?

5. What is the range of sensible judgmental notions?

6. Are judgments polar the same way that connectives are?

Some thoughts on a Stephen Pinker lecture on the modern decline of
violence: modernity and technology exert a collectivizing force on indi-
viduals by providing social tools and systems that only make sense to or
are only a�ordable by groups; roads, agricultural systems, intellectual and
educational systems, economic systems. But they also exert an individuat-
ing force by making individuals' lives comfortable and longer. If individuals
die frequently, they identify with their families out of necessity, but without
that necessity, they are free to perpetuate their own ends.

2007.10.17
Consider the problem of economic incentives for work. It seems neces-

sary to assign resources in exchange for work, with a concommitant guar-
antee of property rights thereafter in order to make good on the meaning-
fulness of that assignation. But to whatever degree that (possibly abstract)

100

assignation enables the actual control of physical resources, it is vulnera-
ble to the `problem' that physical resources are generally higher-order and
can be used functionally to create more: nature has an interest rate. This
creates a situation that has been considered unpleasant by many, that a
person could survive without working, living o� the fruit of machines.

This is not apparently so di�erent from simple food collection (`hunter-
gatherer' society minus hunting) except for the possibility that only some
people are allowed the right to directly gather. Even if we reached a state
of technological advancement where scarcity is not a problem even without
labor (which I suppose we have not achieved yet, pace even those who
suggest we have e�ectively solved the problem of scarcity while including
labor, except that systematic polotical reasons create arti�cial scarcity still)
something seems suboptimal if there is no incentive left to work to create
wealth beyond necessity.

I was made to think about this because of Larry Lessig mentioning in a
talk the thesis that copyright terms should only be extended prospectively,
not retrospectively, because we do not need to give any further incentive
for work already created. A slight strawmanning of this claim is that we
might as well snatch away money from laborers �ve years after they have
earned it, because, after all, they already did the work, and why should we
further reward them for it now?

The counterargument to that seems to depend on the fact that the
laborers contracted to do the work only on the assumed condition that
they would own their pay in perpetuity or until they voluntarily decided
to spend it. However, in�ation is always a risk; the e�ective value of their
wages in fact can be e�ectively `stolen away' (a loaded phrase, though! I'd
rather say `may vanish') at any point in the future, in principle. This seems
roughly analagous to the uncertainty the musician would face after their
copyright terms expire; they may still be the bene�ciary of the goodwill of
the community and not have their work impolitely appropriated.

2007.10.18
Playing with a Twelf puzzle tom7 discovered stemming from uni�cation

involving peculiar higher-order `specializing' clauses and functions such as

clause : pred ([x] A x) -> pred’ (A k).
function : pred k -> outputtype -> type.

The solution to HO uni�cation woes was to wedge in a propositional equal-
ity to postpone the unresolvable equations until another stage of splitting at
which time the twelf-programmer is able to list possible cases of (e�ectively)
a Huet imitation phase.

101

2007.10.19
Advisor meeting today left me feeling dissatis�ed. I am somewhat stuck

on a number of fronts.

2007.10.20
There ought to be a way of doing variable cases in Twelf that at least

appears modular: if only one could make context de�nitions, abstract over
them in higher-order lemma appeals, and incrementally add to them.

2007.10.21
I could sort of `�nitize' the polymorphism problems in HLF by doing

the re�nement language like this:

Unquanti�ed Types υ ::= τ → υ | p
Quanti�ed Types τ ::= ∀α.υ

Worlds p ::= ε | p ∗ (α, n)
Substitutions θ ::= ε | θ, [p/n]

With typing rules like

Γ, α : w ` N ⇐ υ

Γ ` N ⇐ ∀α.υ
Γ, x : τ ` N ⇐ υ

Γ ` λx.N ⇐ τ → υ

x : ∀α.υ ∈ Γ Γ ` θ : w Γ ` S : τ{θ/α} > p

Γ ` x · S ⇐ p

Γ ` () : p > p

Γ `M ⇐ τ Γ ` S : υ > p

Γ ` (M ;S) : τ → υ > p

2007.10.22
Semiuni�cation is when you have inequalities instead of equalities �

seems to get undecidable even faster than uni�cation.

2007.10.23
I worry a bit still about substitution principles as concerns chrisama-

phone's attempt at encoding OLF with operators rather than two species
of worlds.

102

2007.10.24
Whoops, the inequalities in semiuni�cation are not held abstract, as I

suspected, but refer to the partial order of instantiation. Reading:
A Larger Decidable Semiuni�cation Problem, Brad Lushman and Gor-

don V. Cormack.
Polymorphic Type Inference and Semi-Uni�cation, Fritz Henglein's PhD

thesis.

2007.10.25
Some discussion today with tom7 regarding the meaning of values, and

dan licata about binding.

A short play:
[There is table, with a cheeseburger on it. X stands in front of it, with his

arms crossed behind his back, looking attentive. Y saunters in. Y sees the
cheeseburger, delighted, and reaches for it. X, at the last minute, observes
what is going on, and smacks Y's hand out of the way]

Y: You can't do that!
X: Why?
Y: That's the very last cheeseburger in the world!
X: Oh. I see. I'll � I'll have the salad, then.
Y: Well � actually that's the last piece of any kind of food at all in the

world. Happens it's a cheeseburger.
X: So, then.
Y: [Pedagogically] Mustn't eat it.
[A little time passes. X visibly impatient.]
X: Er � Why not?
Y: Obviously, if you eat it, there'll be none left!
X: What good is it, exactly, to save it, if nobody gets to eat it?
Y: Well, you � you see the implications of � of � [Seems to be doing

arithmetic on his �ngers] future generations will � uh � [Looks at X.
Their eyes lock, as if at a duel]

[Both lunge at the cheeseburger, wrestle over it. In the end Y gets it.]
Y: [mid-chew] The problem is, now I want fries.

2007.10.26
For a while I thought the natural uni�cation-based reconstruction of

b : type.
c : ((b -o b) -o b) -> type.
- : c D.

103

which is to say, assigning to D something like the re�nement

∀γ : w→ w→ w.(∀α.(∀β.γ[α, β]→ γ[α, β] ∗ α)→ α)

was totally wrong. But really, instantiating γ with a projection that picks
out β loses no generality precisely because of the nested positive occurrence
of the quanti�er binding β. If I can �gure out what kind of move justi�es
this rewriting (notably back into a fragment I know how to do abstraction
over!) then I might have a decent reconstruction algorithm, and one which
is not too tied to LLF.

2007.10.27

We say τ1 ≤ τ2 when they have the same shape (up to → and ∀) and
when there exists a substitution θ over the free world variables of τ2 (which
may have in its codomain free variables of τ1) such that

x : τ1 ` ητ1(x)⇐ τ2

where η-expansion is de�ned, as expected, by

ητ1→τ2(R) := λx.ητ2(R (ητ1(x)))
η∀τ (R) := Λ(ητ (R _))
ηa(R) := R

Lemma 0.21 If all the occurrences of some positively bound variable β
are in the local contexts of one free variable, then we may replace that free
variable with β without loss.

Proof Sketch There are two directions to show. The �rst,

(∀β.τ1)→ τ2 ≤ (∀β.τ1{P [β]/β})→ τ2

is trivial by instantiation. The second,

(∀β.τ1{P [β]/β})→ τ2 ≤ (∀β.τ1)→ τ2

proceeds by seeing that

τ1{P [β]/β} = τ1{P [β]/β}

β : w ` y _⇐ τ1{P [β]/β}

` Λ(y _)⇐ ∀β.τ1{P [β]/β}

y : ∀β.τ1 ` x (Λ(y _))⇐ τ2

x : (∀β.τ1{P [β]/β})→ τ2 ` λy.x (Λ(y _))⇐ (∀β.τ1)→ τ2

104

Actually, I think I want to reason like this: My goal is to show that if a
type is of the form C[∀β.τ], where the context-hole is in negative position,
then

C[∀β.τ] ≡ C[∀β.(τ{P [~p, β]/β})]

where P is a free variable not already appearing in C or τ , and where ~p
is anything else that might be formed from stu� currently in context. The
easy direction is

C[∀β.τ] ≤ C[∀β.(τ{P [~p, β]/β})]

which I get by instantiation. The less trivial but still reasonable direction
is the lemma

Lemma 0.22

1. If C is a negative context, C[∀β.τ] ≥ C[∀β.(τ{p/β})].

2. If C is a positive context, C[∀β.τ] ≤ C[∀β.(τ{p/β})].

2007.10.28
Fragments for a play about identity:
[M1 and M2 are lying in bed]
M1: [Contentedly, but not looking directly at her] Mmm, Mary. Last

night �
M2: [A light bulb turning on] My name is Michael!
M1: Uh, my name's Michael.
M2: Yes!
M1: Right.
M2: Yes, exactly. My name's Michael.
M1: No.
M2: [Confused] You just said yes a second ago.
[...]
M1: You can't � you can't just subsume your whole self into mine! I

thought � you told me you were a feminist.
M2: I am a feminist. I believe in rattles o� some standard stu�. [Con-

spiratorially] Plus it helps me pick up chicks.
M1: You're a lesbian?
M2: [Laughing] No! Of course not! I'm a perfectly ordinary heterosex-

ual...
[M1 looks relieved]
M2: ...male.
[M1 immediately snaps back to not so relieved. He lifts up the sheet, to

inspect those parts of M2 hidden from the audience. He smiles again.]
M1: No, you're not.

105

[M2 does the same in reverse.]
M2: [Inexplicably sultry] Yes, I am.
[...]
M1: I think you mean 'you'.
M2: I think you mean 'me'.
M1: I think I mean 'me'.

2007.10.29
I think I should be able to prove the same sort of polarity-sensitive

two-part lemma to show that re�nement reconstruction can actually assign
the (a?) right type to the eta expansion of a variable with unknown full
re�nement but at least known simple re�nement.

2007.10.30
The thing to remember about mutual recursion and parser combinators

is that the unit-applying auxiliary function that usually gets called $ actu-
ally needs to be part of the combinator library, and applies its argument
to unit `inside' the application to the further argument that is actually the
next bit of stu� coming o� the stream.

2007.10.31

It seems at least to be important to have a fake sort of binder (to
correspond to universal quanti�cation over worlds) in the syntax, which
actually increments deBruijn indices appropriately, so that when we toss a
variable into the context upon decomposing a ∀, we don't have to do crazy
shifting nonsense on the term side.

* * * * * *
So here's the plan about type reconstruction. Shapes are given by

Shapes s ::= ∀s | s→ s | •
Re�nements τ ::= ∀α.τ | τ → τ | p

And given such a thing we can create a evar-laden guess as to what the
type of a Π-bound but un-type-ascribed variable is:

Γ ` g(s1) = τ1 Γ ` g(s2) = τ2

Γ ` g(s1 → s2) = τ1 → τ2
Γ ` g(•) = P [Γ̂]

Γ, α : w ` g(s) = τ

Γ ` g(∀s) = ∀α.τ
The system for collecting uni�cation constraints from type checking is

easy:

106

Γ, x : τ1 `M : τ2/C

Γ ` λx.M : τ1 → τ2/C

Γ `M : τ1/C1 Γ ` S : τ2 > p/C2

Γ ` (M ;S) : τ1 → τ2/C1 ∧ C2

Γ, α : w `M : τ/C

Γ ` ΛM : ∀α.τ/C

Γ ` S : τ{P [w(Γ)]/α} > p/C

Γ ` (_;S) : ∀α.τ > p/C

x : τ ∈ Γ Γ ` S : τ > p/C

Γ ` x · S : p/C Γ ` () : q > p/p =̇ q

Now η-expansion can be de�ned by shape:

ηs1→s2(R) := λx.ηs2(R ηs1(x))
η∀s(R) := Ληs(R _)
η•(R) := R

The claim is something like

Lemma 0.23 Let s be the shape of τ . Let τ ′ be one particular choice of
evars for g(τ). Run type inference

x : τ ′ ` ηs(x) : τ/C

Then doing uni�cation on C will result in a substitution that will make τ ′

equivalent to τ .

The trouble is that this isn't quite true � it takes some extra moves in
the abstraction phase to eliminate the remaining free variables in favor of
bound variables of the appropriate polarity.

2007.11.1
What would a constructive theory of probability look like? Neel sug-

gested to me the axioms

P (A) = 1 if ` A

P (A) = 0 if ` ¬A

P (A) ≤ P (B) if A ` B

P (A ∨B) + P (A ∧B) = P (A) + P (B)

And I think I could simplify this to just

P (>) = 1

107

P (⊥) = 0

P (A) ≤ P (B) if A ` B

P (A ∨B) + P (A ∧B) = P (A) + P (B)

Then how do we account for conditioning? Maybe by changing them to

PΓ(>) = 1

P·(⊥) = 0

PΓ(A) ≤ PΓ(B) if Γ, A ` B

PΓ(A ∨B) + PΓ(A ∧B) = PΓ(A) + PΓ(B)

PΓ(A|B) = PΓ,B(A)

PΓ(A|B)PΓ(B) = PΓ(A ∧B)

2007.11.2
Here is a notion for how to use substructural features to encode freshness

and apartness of names, following bob's suggestion. The setup is quite
similar to the encoding of a stack machine for miniml in LLF done by
iliano and frank.

name : type.
val : type.
inst : type.
final : type.

% stores are name/val pair lists
store : type.
stnil : store.
stcons : name -0 val -> store -> store.

% some expressions and values
ref : exp -> exp.
deref : exp -> exp.
loc : name -0 val.

% some instructions
ev : exp -> inst. % evaluate
return : val -> inst.
ref1 : val -> inst. % suspended ref
deref1 : val -> inst. % suspended deref

108

% this is the same hack as in frank and iliano’s thing,
% to allow final states to be open
new* : (name -0 final) -> final.

% continuations are (val -> inst) lists
cont : type.
init : cont.
; : cont -> (val -> inst) -> cont.

% exec taks a store as well
exec : store -> cont -> inst -> final -> type.

% these are the easy ones that just push
% something onto the stack
ex_ref : exec ST K (ev (ref E)) W

o- exec ST (K ; ref1) (ev E) W.

ex_deref : exec ST K (ev (deref E)) W
o- exec ST (K ; deref1) (ev E) W.

% these are when we get back a value
ex_ref1 : exec ST K (ref1 V) (new W)

o- ({n :^ name}
exec (stcons n V ST) K (return (loc n)) (W n)).

ex_deref1 : exec ST K (deref1 (loc N)) W
o- (lookup ST N V & exec ST K (return V) W).

% lookup a name in the store
lookup : store -0 name -0 value -> type.

lookup/here : !a (lookup (stcons N V S) N V).
lookup/there : lookup (stcons N’ _ S) N’ V

o- (N # N’ & lookup S N V).

% apartness
: name -0 name -0 type.
irrefl: {l :^ loc} {l’ :^ loc} !a (l # l’).

The new notations are {x :^ A} which means ∀α : w.Πx : A@α, an
a�ne modality !a(A) which means ↓β.∀α.A@(α ∗ β), and zero-use impli-
cation A -0 B which means ∀α.(A@α)→ B.

109

2007.11.3
The reason that nullary implication works on kinds is precisely that it

has no funny business that it applies to the codomain.

2007.11.4
Here is a problem with type reconstruction still:

x : ∀α.∀β.P [α, β] ` ΛΛ(x _ _)⇐ ∀α.∀β.p(α, β)

α : w, β : w ` x _ _⇐ p(α, β)

P [Q[α, β], R[α, β]] = p(α, β)

like if p(α, β) = α ∗ α ∗ β then P = α ∗ β and R = α ∗ β and Q = α
works, and so does P = α ∗ α ∗ β and Q = α and R = β. Even in like

x : ∀α.P [α] ` Λ(x _)⇐ ∀α.α ∗ α

we have an ambiguity in the equation P [Q[α]] = α ∗ α as to whether P or
Q duplicates its argument.

2007.11.5

The above problem seems to be benign for linear (and n-ary) functions
precisely because there is the single α attached to the domain that makes
appropriate-polarity equations still unambiguous.

During my advisor meeting Frank drew my attention to the question of
whether evars created during coverage checking need to have underscores
attached to them. I don't believe they do.

2007.11.6
Need to �gure out whether Alberto and Frank's 0-use business is iso-

morphic to what I'm doing.

2007.11.7
Ok, so the nullary arrow in either system is

Γ, α : w, x : A@α `M ⇐ B[p]

Γ ` λ̂x.M ⇐ A(/ B[p]

and their intro rule I can I can consider the same, but their elim is
something like

(mine)
Γ ` R⇒ A(/ B[p] Γ@ε ` N ⇐ A[ε]

Γ ` RˆN ⇒ B[p]

110

where `Γ@ε' is an operation that I can't necessarily see how to de�ne;
perhaps grab all world variables in Γ and substitute ε for them? No, this
doesn't seem to satisfy local contraction.

Is there any left rule that would go with a modality that on the right
does the following?

Γ@ε ` A[ε]

Γ ` ?A[p]

2007.11.8
The nullary arrows are de�nitely di�erent. The promotion in the Mo-

migliano-Pfenning system allows irrelevant things (once promoted) to be
used as the arguments of unrestricted functions, which isn't the case in
HLF unless unrestricted functions are interpreted as ω-ary use.

2007.11.9
Some funny things go on algebraically in chrisamaphone's project. Dis-

tributivity isn't obvious at all.

2007.11.10
In fact, is there special behavior for when we try to weak-bang a single-

ton ordered context? Not sure.

2007.11.11
The ability for some ASL verbs to incorporate subject and object actu-

ally depends on their gestural structure � I suppose this is like a language
that marks some feature by voicing, an operation only supported, let us sup-
pose, by some consonants in the phonetic inventory of the language. Like,
it might have m and n and lack voiceless counterparts of them. (Voiceless
nasals are pretty rare, right?)

2007.11.12
I am worried still that any paper I might write about uni�cation in HLF

would wind up not essentially being about uni�cation since the separation
is so straightforward. Nonetheless, the term constructs that I added to
make type reconstruction easier complicate things a tiny bit.

2007.11.13
Talked with neel about a strategy for proving the correctness of stateful

but `essentially functional' things like gensym.

2007.11.14
As for uni�cation:
I think I have paged back in the argument for why preserving all sets

111

of uni�ers preserves well-typed uni�ers. I expect the de�nition of ≡P is
concerned with equality under only simply-typed solutions to P .

The `underscore' approach might require underscores to appear in gen-
eral head positions, not just substitutions, if we push inversion across lamb-
das. In this case the notion of `rigid occurrence' needs to avoid locally bound
variables.

Thing to watch out for: what guarantees that types are all sensible
when I project out just one underscored argument in a pattern?

The right way, I think, to phrase the notion of solutions in a given set
of variables, is in terms of projected subsets of simultaneous substitutions
for all variables.

Mental health self-instruction: no more craigslist. No more reddit, digg,
or del.icio.us frontpage.

2007.11.15
Talked to rob a bit about logic programming and Girard and stu�. I

still can't wrap my head around why Girard thinks the way he does about
logic. For my own part, the biggest blot is a lack of understanding of what
cut principles are okay.

2007.11.21
A new thought on the completeness of focussing.
Translate into ordered logic with two positive atoms p and q that act as

key-tokens.

A = vF+ | vF−

F+ = F+ ⊗ F+ | d+A

F− = F+ (F− | d−A

De�ne
←−
X and

←−
A and

−→
X and

−→
A :

←−
A = p�

←−
A

−→
A = p •−→A

X
←−
X

−→
X

vF+ (q � p) •
←−
F+ • q

−→
F+

vF−
←−
F− (q � p)�

−→
F−

d+A q � (q • !
←−
A) p�

−→
A

d−A p • !
←−
A q �

−→
A

F+
1 ⊗ F

+
2 q � (

←−
F+

1 •
←−
F+

1 • q)
−→
F+

1 •
−→
F+

2

F+ (F−
−→
F+ �

←−
F−

←−
F+ �

−→
F−

112

Now prove:

Lemma 0.24

1.
←−
A ; p `

−→
A

2. If Ω, q,
−→
F+,Ω′ ` C, then Ω,

←−
F+, q,Ω′ ` C

3. If Ω, q `
←−
F−, then Ω `

−→
F−

Proof By induction on the proposition.

1.

Case: vF+.

p ` p
id−→

F+ `
−→
F+

•R
p,
−→
F+ ` p •

−→
F+ q ` q

� L
(q � p), q,

−→
F+ ` p •

−→
F+

i.h.
(q � p),

←−
F+, q ` p •

−→
F+

•L
(q � p) •

←−
F+ • q ` p •

−→
F+ p ` p

� L
p� ((q � p) •

←−
F+ • q); p ` p •

−→
F+

Case: vF−.

id←−
F− `

←−
F− p ` p

� L
p�

←−
F−; p `

←−
F− q ` q

� L
p�

←−
F−; q � p, q `

←−
F−

i.h.
p�

←−
F−; q � p `

−→
F−

� L
p�

←−
F−; · ` (q � p)�

−→
F− p ` p

•R
p�

←−
F−; p ` p •((q � p)�

−→
F−)

2.

113

Case: d+A.

i.h.←−
A ; p `

−→
A

!L,�R
!
←−
A ` p�

−→
A

Ass.

Ω, q, p�
−→
A,Ω′ ` C

cut
Ω, q, !

←−
A,Ω′ ` C

•L
Ω, q • !

←−
A,Ω′ ` C q ` q

� L
Ω, q � (q • !

←−
A), q,Ω′ ` C

Case: F+
1 ⊗ F

+
2 .

id−→
F+

1 `
−→
F+

1

id−→
F+

2 `
−→
F+

2 •R−→
F+

1 ,
−→
F+

2 `
−→
F+

1 •
−→
F+

2

Ass.

Ω, q,
−→
F+

1 •
−→
F+

2 ,Ω
′ ` C

cut
Ω, q,

−→
F+

1 ,
−→
F+

2 ,Ω
′ ` C

i.h.
Ω,
←−
F+

1 , q,
−→
F+

2 ,Ω
′ ` C

i.h.
Ω,
←−
F+

1 ,
←−
F+

2 , q,Ω
′ ` C

•L
Ω,
←−
F+

1 •
←−
F+

2 • q,Ω′ ` C q ` q
� L

Ω, q � (
←−
F+

1 •
←−
F+

2 • q), q,Ω′ ` C

3.

Case: d−A.

Ass.

Ω, q ` p • !
←−
A

i.h.←−
A ; p `

−→
A
•L, !L

p • !
←−
A `

−→
A
cut

Ω, q `
−→
A

Ω ` q �
−→
A

114

Case: F+ (F−.

Ass.

Ω, q `
−→
F+ �

←−
F−

id
F+ ` F+

id
F− ` F−

� L−→
F+ �

←−
F−,
−→
F+ `

←−
F−

cut
Ω, q,

−→
F+ `

←−
F−

i.h.
Ω,
←−
F+, q `

←−
F−

i.h.
Ω,
←−
F+ `

−→
F−

� R
Ω `
←−
F+ �

−→
F−

2007.11.24

I think it would be sensible to have some kind of reversal modality (and
corresponding judgment) in ordered logic. Say the two judgments are

j ::= b | f

(`backwards' and `forwards') De�ne Ω† by

(A1 j1, . . . , An jn)† = An j†n, . . . , A1 j
†
1

where b† = f and f† = b. The principal judgment is Ω `f C, and Ω `b C
is a derived judgment de�ned as Ω† `f C. The left and right rules for
connectives are always de�ned for hypotheses of the `forwards' judgment,
for a typical connective like � would be like

Ω, A f `j B

Ω `j A� B

Ψ `j A Ω, B f,Ω′ `j C

Ω, A� B f,Ψ,Ω′ `j C

and for the reversal operator

Ω `j† A

Ω `j ?A

Ω, A b `j C

Ω, ?A f `j C

The cut principles are:

Ω `f A Ω1, A b,Ω2 ` C

Ω1,Ω†,Ω2 ` C

Ω `f A Ω1, A f,Ω2 ` C

Ω1,Ω,Ω2 ` C

2007.11.25
The funny thing about focussing in ordered logic is that the asyn-

chronous decomposition looks very di�erent depending on whether you

115

started on the left or the right. On the left, there is stu� on the left
and right fringes of the context, but if you start on the left, all the action
is in the middle.

2007.12.8
Trying to push the nicety of the completeness proof back into soundness;

not working so well.

2007.12.9
Thought a little about Dan's claim that pattern matching on intensional

function spaces is kind of like a positive arrow. Not sure I agree at all. The
only way it even starts to work out is if the arrow is asynchronous on both
sides, and even then it looks like it wants to turn cointuitionistic on the
left. In which case it's something more like ¬A ∧B rather than A⇒ B.

2007.12.11
Frustrating thing about trying to import Luís's notions into HLF-land

is the Π2 heritage of Twelf-like systems.

2007.12.12
Dan and Noam explained the positive arrow stu� to me today. I think

I get it, though haven't fully digested it. At the very least I understand
better the way that Noam derives asynchronous rules from synchronous
ones. Less sure about whether I feel that it's `modular'.

2007.12.13
For everyone that says �why does everyone have a crush on me� there

is someone who says �why does no-one have a crush on me� and vice versa.
On emotions:
(my perhaps over-Westernized notion of) Buddhism teaches some sort

of control or abandonment of emotion as attachment. This harmonizes
well with an already-present sort of analytic, pragmatic, utillitarian, reduc-
tionistic tendency that says: look, if it doesn't do you any good to hold
a grudge, and it does do you harm, then don't. But the one (religiously
enshrined) source of this reaction gets more respect, sometimes, and the
other is more often brushed o� as geeky roboticness, emotionlessness.

I have emotions, but they have harmed me. At greater distance, they
harm me less. I have negotiated this distance, perhaps inexpertly. (Forgive
me.)

It does no good to assert without evidence that it's important to em-
brace (worse: cling to) or to ignore (better: transcend) emotions. Who
knows if it's important or not? It may be that (and it is sometimes as-
serted that) we can't or shouldn't �ght �nature�. I could accept the �can't�,
at least, only if it happens to be true: but it seems that with e�ort, one can

116

partially beat it. Without construing it as defeat: one can mold oneself.
Here is what bothers me. The smug, pitying belief that if one does not
follow certain rules of accepting (as opposed to ignoring or defusing) grief
or anger or whatever, then inevitably it will come back to bite you. However
true this might be, it doesn't seem to have careful evidence on its side, but
rather anecdotes. I could be ignorant of the appropriate evidence.

On the other hand: how could one prove that there is not a methodology
which allows you to escape this? Here the proponents of emotion-positivism
seem to fall back on `hmph! well, I can't imagine such, and looking for it
is clearly wrong-headed'.

Besides which, the line between emotion and non-emotion is always
suspect.

Science (or as far as I care the useful part of it) is merely the combination
of curiosity and the application of some techniques to avoid obstructions
to understanding. It may be identi�ed with these techniques, but perhaps
more successful techniques may be discovered.

2007.12.15
The changes on the topic of thesis: lake over water, �exhaustion�. Con-

tainment leads to intensity. Read as: determine the work that needs to be
done, in order that it can be completed with focus.

The function of (a function of) examining divination systems is merely
the practice of introducing randomness with a particular �avor, to jostle
oneself out of local minima. There is not really `true' or `false' randomness,
but there are di�erent distributions: it may be useful (or at the very least
interesting) to shift my distribution around.

2007.12.22
An essential insight of postmodernism: more truths are more modal

(time-indexed, place-indexed, sex-indexed, culture-indexed) than we ex-
pected.

An essential insight of �How to Win Friends and In�uence People�: to be
more in�uential over a person's decisions, become that person to a greater
extent. When I say to myself `I shall do this', I believe it because I am
saying it. When I expressing sincere interest in another person, it blurs the
boundary of their identity slightly; I am on their side, I have their interests
in mind, etc. To a slightly greater extent, I am them.

There is statistical learning on the one hand, and cognitive learning
on the other. But there seems to be another form of `learning' spoken of
that is not any more than paraconsistent, but still e�ective as a means of
memorization: call it narrative learning. HtWFaIP is basically constructed
out of anecdotes and epigrams, tagged with morals. Nothing prevents us
from learning bad lessons this way, but given human psychology, it appears

117

to be an e�ective way of (for better or worse) imparting beliefs.

2007.12.29
I can write the following sort of stories. What can be deduced from

this?
One.
There was a being who thought himself a god, who thought himself

omniscient and omnipotent, because he knew the extent of the universe,
and every query he posed to himself came back with a certain answer, and
each answer was correct, and he knew that he knew everything, and if he
posed to himself the question of whether he knew everything, the answer
came back yes.

But he was wrong. Look: here is our own universe, of which he knew
nothing.

Two.
A writer wrote a story, in which a character recited a magic spell that

allowed him to escape the story he was in. Immediately, this character
appeared next to the writer.

2008.1.1
There are dilemmas of the aggregate. If I do this, it causes this much

harm, but that is small. However, if everyone does it, the damage is great.
Am I responsible?

The question is: the aggregate may be harming itself. If it is to avoid
doing this, it must engage in cognition at a level that corresponds to the
problem, which is to say, not at the level of me.

Perhaps, however, I am part of this process. I need not know it for it
to be true.

2008.1.2
Consider the notion of synthetic judgmental structures.
We specify them by giving a translation of propositional connectives

in the synthetic system, into expressions in a known logic. I suppose one
would allow some sort of state-machine-ish system to emulate sensitivity to
polarity or other (perhaps non-binary) such features.

But we at least need extra expressional functions on the hypothesis and
conclusion side, saying at least what one hypothesis and one conclusion
look like, from the outside.

We can then demand without any further use of imagination a limited
form of identity and cut.

Say our known logic has a language o of propositions. We ask �rst of
all for propositional functions H,C : o→ o (this→ is really the intensional
`Twelf' arrow). Let p be the new, synthetic language. For each connective

118

k : pn → p we ask for k : on → o.
So we can easily translate a particular proposition A : o into A : p

by changing each k in A to k. Our imagination is temporarily limited to
singleton (think: created by monadic injection) contexts, so we translate
the sequent

A ` B

to
H(A) ` C(B)

The question is: does the burden of proving this mere transitivity form of
cut elimination plausibly (essentially) require the full theorem?

2008.1.3

Claim: If H(A1) ` C(A2) and H(A2) ` C(A3), then H(A1) ` C(A3).
If always C(A2) ` H(A2) then we're done by appeal to cut-elimination in
the original system, but it may not always be this simple.

2008.1.4
SML still su�ers from serious annoyances when it comes to implementing

long sequences of translations between highly similar languages. What
would �x my headaches? Maybe polymorphic variants? I'm not sure.

2008.1.6
Γ ` ∆ is correct notation when ∆ is interpreted conjunctively. If ∆ is

interpreted disjunctively, this is really Γ;∆ ` #.

2008.1.7
The thing that struck me about positive arrow is that, when combined

with disjunction, it is simply not familiar logic, by the distributivity over
disjunction that as been observed. This means also that Brünnler's deep in-
ference system does not obviously extend to disjunction, but maybe there's
some tricky way around it that works.

Γ, A[] ` B

Γ ` A⇒ B

Γ, B[∆, A] ` C

Γ, A⇒ B[∆] ` C

Γ ` ∆

Γ, A[∆] ` A

Cut: If Γ,∆[] ` A and Γ, A[∆] ` C, then Γ ` C.
If Γ ` ∆ and Γ,∆[] ` C, then Γ ` C.

Identity: ∆[], A[∆] ` A.
∆ ` ∆.

119

Γ ` Ai

Γ ` A1 ∨A2

Γ, A[∆] ` C Γ, B[∆] ` C

Γ, A ∨B[∆] ` C
alternatively?

Γ ` Ai

Γ ` A1 ⊕A2

Γ ` ∆ Γ, A[] ` C Γ, B[] ` C

Γ, A⊕B[∆] ` C

Identity seems okay for both of these, but I don't expect to be able to prove

C ⇒ (A⊕B) ` (C ⇒ A)⊕ (C ⇒ B)

but I can prove

C ⇒ (A ∨B) ` (C ⇒ A)⊕ (C ⇒ B)

and
C ⇒ (A⊕B) ` C ⇒ (A ∨B)

so cut must fail. Ok, so let's reason this through:

A⊕B[C], C[] ` A ∨B

C ⇒ (A⊕B) ` C ⇒ (A ∨B)

A ∨B[C] ` (C ⇒ A)⊕ (C ⇒ B)

C ⇒ (A ∨B) ` (C ⇒ A)⊕ (C ⇒ B)
cut

C ⇒ (A⊕B) ` (C ⇒ A)⊕ (C ⇒ B)

we can call this a principal cut plus one left commutative, and map it to

?

A⊕B[C], C[] ` A ∨B

A[C] ` C ⇒ A B[C] ` C ⇒ B

A ∨B[C] ` (C ⇒ A)⊕ (C ⇒ B)
cut

A⊕B[C] ` (C ⇒ A)⊕ (C ⇒ B)

where ? is the three premisses C[] ` C,A[] ` A ∨B,B[] ` A ∨B.
Hm, suspect. Let's try proving the commutative case for⊕L in isolation.

We have

Γ,Ψ ` ∆ Γ,Ψ, X1[] ` A Γ,Ψ, X2[] ` A

Γ,Ψ, X1 ⊕X2[∆] ` A Γ, A[Ψ] ` C

Γ, X1 ⊕X2[∆] ` C

we get Γ, Xi[] ` C for both i by cut, but then we try to do ⊕L again and
we get only

Γ,Ψ ` ∆ Γ, X1[] ` C Γ, X2[] ` C

Γ,Ψ, X1 ⊕X2[∆] ` C

120

Similarly I would expect a Dyckho�-like implementation of the ordinary
arrow

Γ, A[] ` B

Γ ` A→ B

Γ ` ∆, A Γ, B[] ` C

Γ, A→ B[∆] ` C
to fail in roughly the same way.

Suppose I did this with linear logic, so that & is surely negative. Can I
create a synthetic connective out of & and `positive ('?

Γ, A[] ` B Γ ` C

Γ ` (A (B) & C

Γ, C[∆] ` D

Γ, (A (B) & C[∆] ` D

Γ, B[∆, A] ` D

Γ, (A (B) & C[∆] ` D

Γ, A[] ` B Γ, A[] ` C

Γ ` A ((B & C)

Γ, C[∆, A] ` D

Γ, A ((B & C)[∆] ` D

Γ, B[∆, A] ` D

Γ, A ((B & C)[∆] ` D

But I do seem to have some evidence that even now, positive (is not
negative in its �rst argument:

Γ, A[] ` C

Γ ` (A & B) (C

Γ, B[] ` C

Γ ` (A & B) (C

Γ, C[∆, A & B??] ` D

Γ, (A & B) (C[∆] ` D

for it's not clear how to write the left rule. Note that we get the same
right rules from synthesizing (A(C)⊕ (B(C) but this is not bientailed
by (A & B)(C.

Is it positive in its �rst argument?

Γ, A[] ` C Γ, B[] ` C

Γ ` (A⊕B) (C

Γ, C[∆, A] ` D

Γ, (A⊕B) (C[∆] ` D

Γ, C[∆, B] ` D

Γ, (A⊕B) (C[∆] ` D

These seem like they might be okay, but they are the same rules as I'd
get from synthesizing (A(C) & (B (C) � oh, which is bientailed by
(A⊕B)(C!

Okay, so is it really positive on the outside?

Γ, A[] ` B

Γ ` (A (B)⊕ C

Γ ` C

Γ ` (A (B)⊕ C

Γ, C[∆] ` D Γ, B[∆, A] ` D

Γ, (A (B)⊕ C[∆] ` D

Seems disturbingly like it. In conclusion, I �nd myself able to believe in
two arrows in this system, one (+,−) : −, and one (+,+) : +, but both of
them distribute strangely over disjunction.

121

2008.1.9
Dan and Noam sidestep the above question by making the syntactic

type of things that are arguments to positive arrows totally separate, and
therefore not clearly positive or negative.

2008.1.10
The Πw-at-kind-level thing still seems like a plausible intuition for how

to think about coverage checking etc.
Does SOME in block declarations demand the expression is closed?

Probably not.

2008.1.11
The di�erence between free and existential variables is subtle. Should

think more about whether uni�cation can stand up to circularity as long
as simple types are maintained.

2008.1.12
Couldn't I treat all the free variables at once as a big multi-pi, and then

just ask the question of whether they're topological sorted after the fact?

2008.1.13
The free and existential variables are certainly �intertwined� in the sense

that their types may involve the other.
Thus:
We begin with a constant declaration. We look at its classi�er. We

infer a simple type for it. This might as well go so far as what Frank and
Kevin actually do habitually call a simple type, not what I've been lazily
calling that � as opposed to a mere skeleton. That is, actually �gure out at
least the family for everything, but not the indices. If simple type inference
cannot even �gure out the family, we'll be left with type-level evars at the
very end anyhow, which won't do us any good.

So in some sense FVs and EVs are both modal. For all underscores, we
make up an evar of functional type with included dependencies on all local
bound variables. For FVs, their type includes evars for each index.

What happens if you explicitly indicate a dependency on a bound vari-
able? Should the system duplicate it and yield a non-pattern?

Experimentally: this is what twelf does.

o : type.
a : o -> type.
c : {y : o} {x : o} a (_ y).

==>

122

[Opening file /tmp/a.elf]
o : type.
a : o -> type.
c : {X1:o -> o -> o -> o} {y:o} {x:o} a (X1 y x y).
[Closing file /tmp/a.elf]
val it = OK : Twelf.Status
-

So I seem to be left with a context of variables about which I am curious
as to whether a well-typed instantiation of a certain subset of them leads
to certain equations holding.

After �nding the most general such instantiation (if it exists) I can then
ask whether there is a topological sort of the resulting context.

This context `knows' the full types of all its variables, but they may of
course be expressions that involve instantiatable variables from precisely
that context.

Say that every variable intrinsically, syntactically knows its simple type.
The context of metavariables looks like

∆ ::= (u1, . . . , un) : (A1, . . . An)

Damn � there seems to be three dispositions of variables that I might
care about for the de�nition of solutions, then; variables that are never in-
stantiated (FVs) and apart from that, EVs that are vs. are not instantiated
right now.

2008.1.14
We suppose there to be existential variables and free variables at various

contextual types. Every appearance of these guys in the expression occurs
under a substitution. The only real di�erence between a substitution and
a spine is the associativity of them; and that substitutions sort of carry a
functional interpretation so that inverting them makes sense.

We might as well do everything with substitutions, right?
Anyway, the uni�cation query names a subset of the evars, and asks:

what are the well-typed instantiations of them that extend to well-typed
instantiations of all evars (not necessarily closed) so that some resulting
equations hold?

Equations can be decided syntactically.
The substitution principle is something like: if ∆,Γ ` J , and ∆,Ψ ` σ :

Γσ, then ∆,Ψ ` Jσ.
The type invariant is: every equation is well-typed, modulo all the equa-

tions being solved.

123

We start this invariant o� by having equations that are well-typed pe-
riod, modulo nothing, right?

2008.1.15
Uncertainty � funny that the natural word, and all the synonyms I

can think of it, are so negatively de�ned. Not knowing for sure. Imperfect
knowledge. Unclear, undetermined. etc.

The things we negate here are the exception! Uncertainty is the rule;
the blankness of the future, of distant places and times, the not-clarity of
the not-here, not-now.

The thesaurus provides me some good positive words for this phe-
nomenon: opacity, vagueness, ambivalence, ambiguity, conjecturality. The
notions I can get at here are positive notions of the un-seeability of things,
but also their multi-valuedness, conveying the feel of all the endlessly ram-
ifying possible worlds sitting in the same space, and also our (mere) ability
to guess at these possibilities.

2008.1.16
Saw Derek's talk about his and Andreas Rossberg's mixin module cal-

culus. There's something pleasing about the initial simplicity of it, but it
soon got quite complicated. Sadly the calculus presented int he talk was
the EL, not the IL. The latter still involves the mysterious sort-of-stateful
backpatching that I have never understood.

One argument for why the EL cannot be so easily turned into a reason-
able IL is that there is no evident type system for it, it being all at one
universe, so to speak. Nonetheless I think one might hope for a system of
strati�cation that leaves it (parametrically) looking just about as simple,
much like the LF strati�cation into types and kinds and so forth.

2008.1.17
I still think module systems as we conceive them are �too focused�, and

lump too many things together. I wonder what makes sense in the domain
of mere name-management. The namespace lifting operator {` = mod}
from yesterday, for instance, is interesting.

2008.1.19
The only di�erence between fvars and evars seems to be that the fvars

are not subject to further substitution. So closedness of a substitution is
merely a convenience that says it's the last substitution that will take place
right now � even though, of course, fvars will get abstracted to Πs, which
will `allow' substitution later via application.

It is still necessary to be careful what is meant by a fully well-typed
solution to some equations. If I introduce extra fvars, they are ab initio

124

merely simply typed. So I say:
A solution to a uni�cation problem Ψ;∆ ` P consists of a (tacitly

simply-well-typed) substitution θ for ∆ that leaves all of P true. The
codomain of θ may mention fvars not in Ψ. This substitution θ is a well-
typed solution of P i� there exists an extension of Ψ to Ψ′ such that Ψ′;∆ `
θ : ∆.

2008.1.20
Inversion:

i ::= r | f

(rigid or �ex)

n{σ}iu =
{
m if m{σ} = n;
_ if no such m.

v[σ]{ρ}iu = v[σ{ρ}iu]

u[σ]{ρ}ru = _

u[σ]{ρ}fu = abort

(x · S){σ}−1
u = x · (S{σ}fu)

(c · S){σ}−1
u = c · (S{σ}ru)

(but treat non-local variables like constants) _ is like an exception that
bubbles up to substitution elements.

2008.1.21

Thinking about a statistical puzzle (�the paradox of early stopping�?)
Gustavo told me. Remarkable how shaken the validity of scienti�c results
can be if we don't know all of the experiments that `fail'.

2008.1.22
I was incorrectly imagining that there was a three-way di�erence be-

tween variables, local variables, and constants in uni�cation. This is silly.
Uni�ers are relatively closed; there are only variables (which might well be
called local) and constants.

For non-pattern substitutions σ, even when ξ is a pattern, it is not safe
to reject on occurs-check in situations like

u[ξ] =̇ x · (· · ·u[σ] · · ·)

because as a counterexample you might get (for u :: f : o→ o ` o)

u[x/f] =̇ x · (u[λy.k/f])

which allows u← f.f · k as an instance.

125

I suppose it's still ok to reject

u[ξ] =̇ x · (· · ·u[ξ′] · · ·)

though, as long as u[ξ′] occurs rigidly?

2008.1.23
Does it make any sense to attach scalar multiples to lambda terms to

a�ect merely how β-reductions are counted so as to e�ect a sort of strong
diamond property?

2008.1.24
The uni�cation algorithm consists of these kinds of steps:

1. Homomorphic decomposition of lambda, spine application and cons.

2. Inversion (rigid and weakly-�ex)

3. Projection (actually projecting out _ arguments of evars that occur
rigidly)

4. Intersection (u[ξ] =̇ u[ξ′] 7→ u[ξ ∩ ξ′] =̇ u[ξ ∩ ξ′])

5. Extra Occurs-check (u[ξ] =̇ x · (· · ·u[ξ′] · · ·) 7→ ⊥)

Type preservation and solution preservation are easy for 1, 4, 5. Solution
preservation seems easy for 3, but what about types? What happens when
the projected-out variable occurs in the type later on?

v :: (o, a 1 ` o)

x : o, y : a x ` u[y] = c · v[y, x]

Hm, it seems that this can't happen for the pure pattern fragment, but it
can certainly happen otherwise.

u :: (a u[id]→ a u[id] ` o)

v :: (o, a 1→ a 1 ` o)

y : a u[id]→ a u[id] ` u[y] =̇ c · v[y, u[id]]

7→` u← c · v[1,_]

Here we can't really project out the underscore in v since the type of y still
depends on it. Maybe we simply refrain from making such a projection if
it doesn't work out? I don't think there would be an extra computation
to see if it was possible. I think it would just pop out as the attempt to

126

compute what the type of the new evar is resulting in an exception being
thrown.

2008.1.25
Ok, so say inversion only deals with bound variable replacement and

doesn't do anything else. Like:

u[x, y] =̇ c · (x; v[y, u[x, z]]) 7→ u =̇ c · (1; v[2, u[1,_]])

and only secondarily to we do occurs-check and stu� � in fact, we
postpone carrying out the known instantiation until we know that there
are no occurrences of u on the right.

Underscore cannot always bubble up in nonpatterns past `locally' bound
variables in a di�erent sense of locally. Consider

u[] =̇ c · v[λz.k, λy.y · u[]]

we do have a solution in v ← 2 · 1, so we should make a move to

u← c · v[λz.k, λy.y ·_]

not
u← c · v[λz.k,_]

Projection takes place when the types can be so projected, but since
Πs are linearized, we can eagerly attempt to project rightmost things in a
context, which might make more leftward things projectible later.

Really _ is a root, I think; I ought to lambda abstract it when it is
standing for a bunch of lambdas, but whatever.

So my new set of things is

1. Homomorphic decomposition of lambda, spine application and cons.

2. Inversion

3. Projection (actually projecting out _ arguments of evars that occur
rigidly)

4. Intersection Projection (project out n from u =̇ u[ξ, n, ξ′] when n 6=
|ξ|)

5. Pattern occurs-check (u[ξ] =̇ x · (· · ·u[ξ′] · · ·) 7→ ⊥ if u occurs rigidly
on the right)

6. Rigid head occurs-check (u[ξ] =̇ c·(· · ·u[σ] · · ·) 7→ u[ξ] =̇ c·(· · ·_ · · ·))

7. Pushing up underscores.

127

8. Changing u =̇ R to u ← R and carrying out modal substitution
{R/u}.

Suppose u :: A1, . . . , An ` A. We hear from somewhere else that u's
instantiation cannot possibly use its ith argument. So we set up a new
variable v with type

v :: A1, . . . , Ai−1, Ai+1θ,Ai+2↑θ, . . . ` A↑n−iθ

where θ = {_.id}, and ↑σ = 1.↑ ◦ σ, and we add an equation

u← v[1, . . . , î, . . . , n]

Now: could this substitution go through even when a variable is used
deeply under some other evar, resulting in a captured exception?

I can check whether a given substitution is well-typed, before I check
that the classi�ers are types. So I can say things like �for all well-typed
substitutions, the following thing is well-typed�, also �for all well-typed
substitutions that satisfy P , the following thing is well-typed�.

2008.1.27
Recall that economic value is torsorial � how can one sensibly speak

of derivatives with bounded exposure about goods that may themselves
be perishable? The value of �at currency derives from peculiarly human
recursive beliefs, just like art.

2008.1.28
Does game semantics merely dress up quanti�er alternation in cute

clothing? I think reading Colin Stirling's higher-order matching work has
a good chance of disabusing me of precisely this cynicism.

Trying to �guring out what the typing invariant on underscored expres-
sions should be is still vexing. I cannot assume that they only appear to
the right of u←M if I want to actually carry out substitutions of such �
which is the whole point.

2008.1.29
Figuring out the typing invariant for uni�cation with underscore is in-

furiating.

2008.1.30
Harry Mairson gave a talk on how kCFA is EXPTIME-complete. I

didn't quite see how the k ≥ 0 came into play. For k = 0 it happens to be
PTIME-complete.

2008.1.31
Consider type theories that capture polynomial-time computation; can

they be re�ned to say anything about particular-degree polynomials?

128

Mairson's assertion that all static analyses are essentially abstract in-
terpretation sticks in my mind. Don't know whether to agree with it or
not.

* * * * * *
Try the following invariant for typing in uni�cation:
GivenM1 =̇ M2 ∈ P . It is well-formed if there is a Γ and A such that for

any θ1 that is a well-typed instantiation of every free evar that results in no
underscores in M1 and M2, we have Γ `P Miθ1 ⇐ A. The B ≡P B′ deep
inside that judgment essentially: means for any θ2 that is a (not necessarily
well-typed) instantiation of all the evars that satis�es the equations in P ,
then Bθ2 = B′θ2.

2008.2.1
Rename the θ1, θ2 above to θt, θe for typed and equational substitutions.

For the spine cons case, we have by assumption

Γ `P Miθt ⇐ A Γ `P Sθt : [Miθt/x]B > Ci

Γ `P (Mi;Si)θt : Πx:A.B > Ci

for some C1 ≡P C2. But we should have M1 ≡P M2, so M1θt ≡P M2θt?
This doesn't really work � I've got the quanti�cation mixed up. I am

introducing a ∀ in the two premises, and I let two θt be given, and then I
don't know how to reconcile them in the ∀ elimination for the conclusion.

Here's another attempt. An entire set of underscore-mentioning equa-
tions P is well-formed if: for any possibly open substitution θt that is well-
typed, not necessarily satisfying of all the equations, but which eliminates
all underscores, Pθt is well-formed in the sense of `Pθt

.
Then, we start by considering (M1, S1) =̇ (M2, S2) 7→M1 =̇ M2 ∧ S1 =̇

S2. We want to show the latter is well-formed, so let a θt be given. Since
the types of evars have not changed, this is also a valid typed substitution
for the former state. By inversion we see

Γ `Pθt
Miθt ⇐ A Γ `Pθt

Sθt : [Miθt/x]B > Ci

Γ `Pθt (Mi;Si)θt : Πx:A.B > Ci

(For some C1 ≡Pθt
C2) But M1θt ≡Pθt

M2θt, so we can transfer the
spine typing to the appropriate type.

2008.2.2
The thing from yesterday seems to be working well so far.

2008.2.3
Hit a snag: instantiation fucks up types in the context. Still searching

for a workaround.

129

2008.2.4
Here's an idea. De�ne a notion of `simple development' of a uni�cation

problem that allows introduction of new variables, new underscore-free well-
typed assignments, and replacement of equals with equals. The invariant is:
every underscore-free simple development of the current uni�cation problem
is well-typed.

2008.2.5
Here's a gadget that seems sort of like a free strict ω-category.
Call it a `dicomplex' by analogy with ditopologies.
The data of one consists of a set Cn of n-cells for each n, and again

for each n there are maps dom, cod : Cn+1 → Pn. The set Pn is de�ned
recursively from the Cn. First of all we have P0 = C0, and Pn+1 is going
to be the set of pasting diagrams that arise from syntactic expressions over
Cn+1.

What are these syntactic expressions? A candidate π for Pn is made
from

π ::= cn | π ◦m π | idp

where p is an actual path from Pn−1. When is one of these well-formed?

dom cn = p1 cod cn = p2

` cn : p1 ⇒n p2

` idp : p⇒n p

` π1 : p1 ⇒n p2 ` π2 : p2 ⇒n p3

` π2 ◦0 π1 : p1 ⇒n p3

` πi : pi
1 ⇒n p

i
2 ` p2

i ◦m p1
i : τn−1 (∀i ∈ {1, 2})

` π2 ◦m+1 π
1 : (p2

1 ◦m p1
1)⇒n (p2

2 ◦m p1
2)

A τn is something of the form p⇒n p
′ for p, p′ ∈ Pn−1.

Now we want to interpret such a candidate as a graph of sorts. Notice
that Pn also supports dom and cod operations.

* * * * * *
Erg, let me start over.
To describe a dicomplex, we provide sets Cn and maps dom, codCn+1 →

Pn, which are to satisfy certain axioms. First, de�ne the Pn. An element
of Pn is called an n-diagram.

A 0-diagram is a set X, and a map ` : X → C0. An n+ 1-diagram is a
tuple (X, `, p, d, c) where

130

• X is a set

• ` is a map X → Cn+1

• p ∈ Pn

• d, c are both functions such that d(x) and c(x) are both morphisms
from dom(` x) to p, for any x ∈ X

A 0-diagram morphism (X, `) to (X ′, `′) is a function f : X → X ′ such
that `′ ◦f = `. An n+1-diagram morphism (X, `, p, d, c) to (X ′, `′, p′, d′, c′)
is a pair consisting of f : X → X ′ and g : p→ p′ such that

• `′ ◦ f = `

• d′ ◦ f = λx.g ◦ d(x)

• c′ ◦ f = λx.g ◦ c(x)

The intuition behind the axioms is that I want to require the domains
and codomains in a dicomplex to be `connected' pasting diagrams, which
are generated from composition, identities, and cells. Connected pasting
diagrams have a clear notion of domain and codomain themselves, so that
I can require that the domain and codomain of the domain and codomain
are the same.

2008.2.6
Let me try to construct a counterexample to the type soundness of

uni�cation as I understand it.
It would have to involve

P ∧ u← R 7→ [R/u]1P ∧ u← R

I suppose beforehand that there for any well-development of the former
that results in no underscores, the result is well-typed. I wish to show this
about the latter. I can take any development of the latter and mostly imi-
tate it in the former: the only thing I cannot to is imitate the substitution
of R for u itself, since I don't generally know that R is well-typed. If the
development apart from R/u already eliminates all underscores, then I do.
So I must worry that it doesn't.

Now u could occur in another equation somewhere, or else in a type in
∆. This being unless I don't need to push developments through to ∆, not
sure about that. I will have to deal with the case of other equations at the
very least.

So my situation looks like:

P ∧Q(u[σ]) ∧ u← R 7→ P ∧Q(R[σ]) ∧ u← R

131

Hmm... Here's an idea: a development step is licensed if the terms are
well-typed modulo the equations after adding it.

2008.2.9
Summary of approaches tried so far:

1. Naive attemps to �nd typing invariant on underscore expressions

2. Early quanti�cation that failed to separate equality and typing

3. Separate quanti�cational approaches

(a) For all underscore-eliminating substitutions (one for each equa-
tion; fails at cons case)

(b) For all underscore-eliminating substitutions (global; fails at sub-
stitution case)

(c) For all developments (various de�nitions of `development'; also
fails at substitution)

(d) For all generalized projections (couldn't �gure out good de�ni-
tion)

(e) For all entailed equalities (fails at the outset)

4. Attempt to rewrite every underscore-using uni�cation trace to one
that doesn't.

(a) By analyzing and eliminating circularity (works for purely rigid
problems)

i. Without extra nondeterministic guessing of, e.g. generalized
projections

ii. With them

(b) NEW: By blatantly deunderscoring failed occurs-checks and
substituting `forbidden fvars' for underscores arising from inver-
sion.

2008.2.10
I tried to get rid of the `forbidding' itself, but it seems to be easier to

keep it � that way I can push the identical equational theory down through
both the actual trace and the one that is simulated in parallel so as to show
preservation of types. While creating them during inversion, one may need
to create them at higher type and apply them to local variables that were
preserved in order to get the typing to work right.

For underscores arising from occurs-checks I just carry out one substi-
tution and leave it at that. This move would be no good in the actual

132

algorithm of course because of termination concerns, but the `simulated'
trace simply tracks the original, and by construction ends the same way.

2008.2.13
The totality of patterns is useful after all. Consider the contexts Γ =

x : o, y : a x, z : a x→ o and Ψ = w : o, w′ : a w, v : o, v′ : a v → o.
Faced with the equation

u[z._.y._] =̇ z y

(which is well-typed because we can �ll in both underscores with x) we
would like to say u← v′ w′, but this is not well-typed.

2008.2.14
Dan Licata talking again about his and Noam's work. De�nitional Re-

�ection a la Schröder-Heister feels very much like merely o�ering a graph-
theoretic way of de�ning propositions.

2008.2.15
A return to thinking about multidimensional graphs.
We de�ne three notions indexed by natural numbers: graphs, paths, and

path morphisms. An n-path exists in an n-graph. An n-path morphism is
between two n-paths. The homset of morphisms between n-paths P and
P ′ is written nPath(P, P ′).

• A 0-graph is a set C.

• A 0-path in a 0-graph C is a set X and a map ` : X → C.

• A 0-path morphism (` : X → C) → (`′ : X ′ → C) is a morphism
f : X → X ′ such that `(x) = `′(f(x)) for all x.

• An (n + 1)-graph is a tuple (G,C, dom, cod) where G is an n-graph,
C is a set, and dom, cod are maps that take elements of C to n-paths
in G.

• An (n+ 1)-path in an (n+ 1)-graph of the form (G,C, dom, cod) is a
tuple (P,X, `, d, c) where

– P is an n-path in G

– X is a set

– ` is a map X → C

– d is a function of type Πx:X.nPath(dom(`(x)), P)

– c is a function of type Πx:X.nPath(cod(`(x)), P)

133

• An (n+1)-path morphism (P,X, `, d, c)→ (P ′, X ′, `′, d′, c′) is a tuple
(f, g) where

– f : X → X ′

– g : nPath(P, P ′)

– `(x) = `′(f(x))

– d′(f(x)) = g ◦ d(x)
– c′(f(x)) = g ◦ c(x)

(Categorifying, I might think d, c were sort of natural transformations.)
Let's try to de�ne connected paths.
One judgment is f : A→ B (`f is a connected path from A to B') where

f is an (n+1)-path, and A,B are n-paths. We will arrange in this case for
there to be a homomorphism of A and B into the underlying n-path of f .

The other one is P : o, (`P is a connected 0-path') which is true just in
case the underlying set of P is a singleton. τ stands for either A→ B or o.

P : τ

idP : P → P

There are no (n + 1) cells at all of idP . The homomorphisms from P and
P are the identity ones.

f : A→ B g : B → C

g ◦0 f : A→ C

We have an f = (P,X, `, d, c) and g = (P ′, X ′, `′, d′, c′) and maps iA :
nPath(A,P), iB : nPath(B,P) and jB : nPath(B,P ′), jC : nPath(C,P ′).
I think what we do then is take the two evident arrows nPath(B,P + P ′)
that we can hack out of iB , jB and coproduct injections, and take their
coequalizer nPath(P + P ′, Q). We can string along the old c, c′, d′, d′ by
tacking on injections and sending them to Q via the coequalizer. and same
thing with iA and jC . The label set for the result is just X +X ′, and we
similarly coproduct together `+ `′ etc.

134

B1 ◦n A1 : C → D B2 ◦n A2 : C → D

g : B1 → B2 f : A1 → A2

g ◦n+1 f : (B1 ◦n A1)→ (B2 ◦n A2)

We have an f = (P,X, `, d, c) and g = (P ′, X ′, `′, d′, c′) and maps

i1 : nPath(A1, P), i2 : nPath(A2, P)

j1 : nPath(B1, P
′), j2 : nPath(B2, P

′)

Then I guess I need to take a big colimit. I should also be inductively
guaranteeing that there are embeddings of arrows into their composition so
this is possible.

2008.2.16

Yeah, the colimit construction seems right � I want to lift (via id)
things of lower dimension.

The funny thing about the Baez-Dolan `periodic table' in this setting in
that if you look at a twice-monoidal set (i.e. a commutative monoid) the
commutativity arised from the fact that you can't anchor down the two-
cells to any particular one-cell � the only one that there is is the identity
on the unique object, so you can't tell the di�erent paths apart.

2008.2.18
There's a notion of `admissibility' mentioned in Neelk's thesis proposal

that seems interesting � it is supposed to have come from Lars Birkedal and
some coauthor. Sadly it's not as symmetric as I thought, passing from arbi-
trary functions to extensions to continuous functions: all the approximation
seems to happen in the second step.

2008.2.20
Two uses for goals: as information for error-correction during commu-

nication, and as predictions for the sake of self-directed `machine-learning'.

2008.2.21
Went to a talk by some guy about mechanisms and cognition. Pretty

low-content. I am frustrated at notions like `embodied' vs. `nonembodied'
computation because they seem contentless � or rather, that their content
is mushy and subjective. Like, plainly, a machine with eyes and arms and
legs interacts with the world in a very complicated way, but it's not as if
a laptop with a monitor and keyboard doesn't interact with the world. It's
just that it can't move about very e�ectively.

135

2008.2.22
I feel like I should be able to identify the `twist' arrow in the ω-graph

analogue of a braided monoidal category. It would be something with 2- and
3-cells, and trivialized at 0- and 1-cells. The only 1-cell is the identity arrow
• → •. All 2-cells are therefore horizontally and vertically composable.
Suppose there are two basic 2-cells x and y... actually, I can't �nd any
evidence that a twist exists, because as things are set up, x◦y and y ◦x are
just plain identical. Maybe this has to do with the fact that every bicategory
is equivalent to a 2-category, but not every tricategory is equivalent to a
3-category?

Nonetheless by using 1-categorical concepts (of taking colimits of paths
to de�ne composition) I might have got an adequate notion of 2-graphs.
Maybe this can be pushed up somehow?

2008.2.23
What is the cut elimination theorem for ordered logic like in HLF?
If Ω ` A and ΩL, A,ΩR ` C, then ΩL,Ω,ΩR ` C.

ca : {a} {b} {c}
(conc A @ a)

-> ({d} hyp A @ d -> conc C @ (b * d * c))
-> (conc C @ b * a * c)
-> type.

2008.2.24
`Open-ended' equality for LF.
Syntax:

Expressions E ::= M | Ã(E)
Types A ::= · · · | {A}
Terms M ::= · · · | {E}

Judgments:
Γ ` X̃ : X1 ∼ X2

Γ ` E ÷A

Rules:

Γ ` E ÷A

Γ ` {E} ⇐ {A}
Γ `M ⇐ A

Γ `M ÷A
Γ ` E ÷A1 Γ ` Ã : A1 ∼ A2

Γ ` Ã(E)÷A2

Γ, y : Y1 ∼ Y2 ` X̃ : X1 ∼ X2 Γ ` E ÷ Eq(Y1, Y2)

Γ ` let y = E in X̃ : X1 ∼ X2

136

2008.2.25
A funny thing about base-type polymorphism is that the obvious def-

inition of Leibniz equality isn't symmetric � going down an order in the
types I can get a re�ect, but it's not obvious whether this process has a
�xpoint.

2008.2.26
Turns out the higher-order logic programming thing I thought of is

totally old hat to lambda prolog hackers.

2008.2.27
Think I have an easier way of thinking about the Stirling algorithm.

Dunno whether it will stand up to his later development, but it seems
largely isomorphic for the special case of there being only �rst-order con-
stants.

Set up the usual contextual business by saying

Normal Terms M ::= λΨ̂.R
Atomic Terms R ::= x · S | f(R,R) | c
Substitutions σ ::= id |M.σ

and then add

Preatomic terms P ::= (M,σ) | R
Lookup Table βπ ::= · | βπ[(βπ̄,M)/x]

Lookup Table Pair γ ::= (β0, β1)
Polarity π ::= 0 | 1

We write projection from pairs as γπ, and polarity �ipping as π̄. A closed
atomic term is written r. A state is a tuple (P, r, γ, π). The interpretation
of a state is the proposition [γ;π]P = r. The left side is de�ned by

[γ;π](M,σ) = [γπ̄M | γπσ]

[γ;π]R = γπR

We de�ne winning states inductively.

` (R, r, γ[(γπ̄, σ)/Ψ̂], π) win

` ((λΨ̂.R, σ), r, γ, π) win ` (c, c, γ, π) win

` (R1, r1, γ, π) win ` (R2, r2, γ, π) win

` (f(R1, R2), f(r1, r2), γ, π) win

137

(βπ̄,M)/x ∈ γπ ` ((M,σ), r, γ ← βπ̄, π̄) win

` (x[σ], r, γ, π) win

Where γ[(γπ̄, σ)/Ψ̂] and γ ← βπ̄ are hopefully obvious abbreviations for
substitution operations.

2008.2.29

Even better: A state is a tuple (R, r, γ). The interpretation of a state
is the proposition γR = r. The notion of winning state

` (c, c, γ) win

` (R1, r1, γ) win ` (R2, r2, γ) win

` (f(R1, R2), f(r1, r2), γ) win

(γ′, λΨ̂.R)/x ∈ γ ` (R, r, γ′ + ((γ, σ)/Ψ̂)win

` (x[σ], r, γ) win

2008.3.3
Can't trust the constant rule that I have necessarily. Counterexample:

λf.u[f] =̇ c (f (u[λx.k])))

has solution u← c (f (ck)).

2008.3.4
I think the two rules I want are:

u =̇ H · Ŝ(u[ξ]) 7→ u =̇ H · Ŝ(_)

u =̇ R̂(u[σ]) 7→ ⊥ (R̂ is strongly rigid)

2008.3.5
Reading through Twelf's unify.fun. Thoughts:

• What are LVars? Something to do with blocks.

• What are AVars? Haven't a clue.

• Might want invert to pass along a variable that says whether it's in a
rigid or nonrigid position.

• Or is this already the distinction between invert and prune? Seems
so: prune is rigid, invert is not necessarily.

• pruneSub comment by invertSub???

138

• What's the deal with waking up constraints? What else should be
done about it?

Okay, so Twelf does actually throw the occurs-check when it shouldn't.
Consider:

o : type.
k : o.
eq : ((o -> o) -> o) -> ((o -> o) -> o) -> type.
refl : eq M M.

% c : eq ([x] U x) ([x] x (U ([y] k)))
% -> type.
% test : c refl.

c : {U : (o -> o) -> o} eq ([x] U x) ([x] x (U ([y] k)))
-> type.

test : c ([x] x k) refl.

The commented-out code will crash and burn with an occurs-check, but
the code below it works �ne. This is because when trying to solve

λx.u[x] =̇ x · u[λy.k]

Twelf thinks that u on the right is a `rigid enough' position even thought
the substitution isn't a pattern.

2008.3.6
The troubling thing about the way constraints are stored is that both

having extra variables without constraints constraining them, and extra
constraints without variables witnessing them, seem to be possible errors.

2008.3.8
It seems reasonable to store even singleton MIDI events as durationed

sequences, so that operators like �speed up� and �transpose� and so on work
uniformly on sequences and singletons.

2008.3.9
Negationless logic doesn't yet make much sense to me. It isees like it's

strictly less expressive than inuitionistic logic.

2008.3.10
Watching a John Baez video talking about lattices and Lie Groups and

Dynkin diagrams. It seems that he's claiming D4 is the four-tuples that
are all integers or all half-integers, and also that Dn is the n-tuples that
sum to an even number. I don't see why these are isomorphic.

139

The E8 lattice is supposed to be 8-tuples that are all integers or all
half-integers, which also must sum to an even number.

2008.3.12
Intrinsic encoding of LF breaks down when you get to Π typing.

tp : type. %name tp T.
ltp : type. %name tp LT.
tm : tp -> type. %name tm M.
ltm : ltp -> type. %name tm LM.
var : ltp -> type. %name var H.
sp : ltp -> tp -> type. %name sp S.

subst/ltp : ltm A -> (var A -> ltp) -> ltp -> type.
subst/tp : ltm A -> (var A -> tp) -> tp -> type.

tt : tp.
fam : tm tt -> tp.

base : tp -> ltp.
pi : {x:ltp} (var x -> ltp) -> ltp.

root : tm T -> ltm (base T).
lam : ({x:var A} ltm (B x)) -> ltm (pi A B).

app : var A -> sp A T -> tm T.

nil : sp (base T) T.
cons : sp B’ T -> subst/ltp M B B’ -> sp (pi A B) T.

subst/ltp/base : subst/ltp M ([x] base (T x)) (base T’)
<- subst/tp M T T’.

subst/ltp/pi : ???

2008.3.13
Consider coverage checking.
A coverage goal is something like Γ ` A : type. For example, x : nat, y :

nat ` plus x y u[] : type. The question is, how can I use constants from
the signature to match something of type A? My signature in the above
case probably looks like

nat : type. z : nat. s : nat -> nat.
plus : nat -> nat -> nat -> type.

140

plus/z : plus z N N.
plus/s : plus (s N) M (s P)

<- plus N M P.

The inputs x and y are `hard', so they don't unify with s n[] or with z. I
would have thought this were matching but for the evar u[] coming from
the output. Do we just ignore the output then? Anyway, splitting the free
variable x leads to two coverage goals:

x′ : nat, y : nat ` plus (s x′) y u[] : type

y : nat ` plus z y u[] : type

Assuming the evars in the clauses are given permission to depend on the
x′, y, these are now immediately covered. But how did we even do split-
ting? We tried to unify the output types of clauses against nat, and then
abstracted. For instance, with s we fully applied it to maximally general
evars of the types of its arguments, and then uni�ed its result type with
nat, which left no constraints, and generated the evar x′. Hmm. Say >>
for coverage:

c : ΠΨ.b ∈ Σ θb = a

Σ >> (Γ ` a : type)

Σ ∼ B = (∆i, θi) ∀i.Σ >> (∆i,Γ ` θia : type)

Σ >> (Γ, ψ : B ` a : type)

(Σ, c : a) ∼ B = (Σ ∼ B), (a ∼ B)

∃Ψ.a =̇ b 7→ ∆ ` θ

ΠΨ.a ∼ b = (∆, θ)

My brain is giving up at the notion of how to split on higher types.

2008.3.14
Splitting at higher types doesn't seem quite so crazy to me anymore.

You just keep a context of parameters that are introduced by arguments
to free variables. These are also available for constructing things at the
eventual return type.

Conjecture If a logic program covers with each of the blocks in its regular
world added to the signature somehow (not clear what to do with the SOME
parts: maybe turn them into free variables?) then it covers over the actual
regular world.

141

c : ΠΨ.b ∈ Σ [θ/Ψ]b = a

Σ >> (Γ ` a : type)

Σ; Ψ ∼ b = (∆i, θi, Ri) ∀i.Σ >> (∆i,Γ ` θi[λΨ̂.R/ψ]a : type)

Σ >> (Γ, ψ : ΠΨ.b ` a : type)

(Σ, c : A); · ∼ b = (Σ; · ∼ b), (c : A ∼ b)

Σ; Γ, x : A ∼ b = (Σ ∼ b), (x : A ∼ b)

∃Ψ.a =̇ b 7→ ∆ ` θ

H : ΠΨ.a ∼ b = (∆, θ,H[idΨ])

Could these speci�cations of splitting yield coverage results even for LF
as self-encoded to yield base-type polymorphism? Eh. Probably not for
higher-order programs. Maybe for polymorphic ones.

2008.3.15

The notion I had that suitably structured plain ol' simple graphs (maybe
with vertices or edges colored) could serve as a useful starting point for a
de�nition of weak ω-categories isn't really panning out that well.

2008.3.16
One could derive a chain complex from an n-category C in a sort-of-

obvious way by taking Cn to be the free Abelian group over the n-cells
of C, and let the boundary operator take for instance f : A → B to
B−A. Obviously then higher cells would satisfy the chain condition ∂∂ = 0,
because their codomains and domains would have the same boundary. But
this would seem to lose information, as all endomorphisms would have
boundary zero.

The geometric contribution of category theory is a more sophisticated
notion of boundary, where a cycle isn't just a cycle, but a situated one.

2008.3.17
Algebraizing the interchange properties of `horizontal' composition of

higher cells seems very fragile.
I noticed that associativity for composition of 1-cells sort of falls out

of the ability to compose 2-cells appropriately. If we take the fact that

142

g ◦ f = h to be (at least) the existence of a diagram

A
h

- B

m

C

g

-

f
-

then we can chase

A
m

- B

C
? m -

m
-

D
?

m

-

6

to see that the any two arrows that are respectively composites of three
arrows in the two di�erent orders available are still connected by a two-cell.

So presumably what I want to say is that weak equality of two n-paths
is the existence of a pair of n+1-cells α, β between them such that the path
α;β is weakly equal to the identity path, and so too β;α is weakly equal to
the other identity path. This is a sort of coinductive de�nition, although
if you're talking about n-categories for �nite n it bottoms out (`tops' out?)
at the nth level.

The axiom that (if everything works out right, which it probably won't)
yields both the existence of composites and their associativity is merely that
every path is weakly equal to a direct one from its domain to its codomain.

* * * * * *
I think I could avoid strengthening lemmas in the proof of linear cut

elimination if I had �rst-class world-to-world functions.

2008.3.18
Still wishing for a simpler de�nition of just the graph-theoretic portion

of my random thinking about ω-categories.

143

The essential thing, I thought, was the de�nition of connected n-paths.
The data of a graph is a collection of (n+1)-cells that have connected n-path
domain and codomain. I staged the de�nition by putting o� the notion of
`connected'. Maybe it would be easier to de�ne only the connected n-paths
and quotient out by graph identity later? Let's see.

Morphisms between n graphs should be assignments of cells to cells that
preserve dom and cod.

Here are the ways to build (connected, but we'll omit that word) (n+1)-
paths f : A →n B from n-path A to n-path B. (The 0-paths are just the
0-cells.)

If f is an (n+ 1)-cell from A to B, then f is an n-path.
If f : A→n B, g : B′ →n C, and B̄ → G ∼= B̄′ → G, then g ◦0 f : A→n

C. See below about the operation X̄.
If f : A →n B, g : C →n D, then g ◦m+1 f : (C ◦m A) →n (D ◦m B) if

both the inner composites make sense.
If f is an n-path, then idf : f →n+1 f .

* * * * * *
If f is an n-path A→ B in G, then I can compute from it a generalized

subgraph f̄ → G and also show how its domain and codomain are contained
in it via Ā→ f̄ and B̄ → f̄ that commute in the obvious way.

For singleton paths, take a point at the n-cell, and its dom and cod.
For composites, take colimits.
For identity paths, take the dom/cod.

2008.3.22
I think things become easier if I �rst consider `untangled paths' that

never duplicate path elements. I feel that a general path will always be a
homomorphic image of such a special path.

So let a pregraph be a graded collection of cell sets Cn with boundary
maps ∂in : Cn+1 → Πn with i ∈ {0, 1}. The type Πn consists of triples
(s, C, t) where s, t ∈ Πn−1 and C ⊆ Cn. By convention Π−1 = {∗}. We
con�ate (s, C, t) with C for the use of ∈.

The sphere of (s, C, t) ∈ Πn in a pregraph is the pregraph obtained
by keeping only the cells that are hereditarily the domain or codomain of
(s, C, t) and adding one more n-cell with ∂0(∗) = t and ∂1(∗) = s.

A pregraph is n-balanced if for every x ∈ Cn−1 there is a unique y0 ∈ C
such that x ∈ ∂0y0, and a unique y1 ∈ C such that x ∈ ∂1y1. An n-cell is
linked to an (n− 1)-cell g if g is in the domain or codomain of f . of g that
is in the codomain of f . A pregraph is connected if the equivalence relation
induced by the linked-to relation has only one equivalence class.

(s, C, t), (s′, C ′, t′) ∈ Πn are compatible i� s = s′ and t = t′. (s, C, t) ∈
Πn is an n-path if its sphere is n-balanced and connected, and s and t are

144

compatible (n− 1)-paths.
The unique element of Π−1 is a (−1)-path, and considered to be com-

patible with itself.
A pregraph is a graph if ∂ always outputs compatible pairs of n-paths.

* * * * * *
This sphere intuition is seductive. Suppose we have dom, cod : Cn+1 →

PCn and k : Cn+1 → Cn. We demand:

• domx ∪ {kx} is n-balanced and connected.

• codx ∪ {kx} is n-balanced and connected.

We could ask that the image of dom, cod on the one hand (`real cells') is
disjoint from k on the other (`virtual cells').

In this case dom, cod : Cn+1 → PRn and k : Cn+1 → Vn and Cn =
Rn ∪ Vn.

Actually Vn should be determined, shouldn't it, by what is possible at
each stage? If x, y ∈ PRn and z ∈ Vn are such that x∪{z} and y ∪{z} are
n-balanced and connected, then put an element in Vn+1 for that triple.

Yes, so: We have a choice of Rn for each n. We must also choose
domi : Rn+1 → PRn and K : Rn+1 → Vn where Cn = Rn∪Vn. The Vn are
determined as follows: V0 = {∗}. Vn+1 = {(d0, d1, k) |S(di ∪ {k})} and we
can extend domi,K to all cells by domi(d0, d1, k) = di andK(d0, d1, k) = k.
We require S(domi x ∪ {K x}) for all x ∈ Rn.

Now we de�ne the predicate S(C) for C ⊆ Cn. Take all of C's real and
virutal domains and codomains hereditarily and we have a new pregraph
at least. S holds if this pregraph is n-balanced (every n-cell, most of them
real but one virtual, covers every (n − 1)-cell exactly once by domain and
codomain) and connected, by equivalence closure of linkage between real
cells.

Try again:
Choose Rn for each n, and ∂ : Rn →

∏n−1
i=0 PRi × PRi. Abbreviate

Vn =
∏n−1

i=0 PRi × PRi. Let C + k be the hereditary restriction of the
graph to C with an additional n-cell ∗ that ∂ maps to k. Being n-balanced
means every (n − 1)-cell is (separately) the domain and codomain of a
unique n-cell. Being connected means that the equivalence relation arising
from δ0 and δ1 induces a single equivalence class.

2008.3.23
Balancedness is not really su�cient. Consider popping a two-cell out of

a two-sphere that is itself not from the source object to the target object.

145

2008.3.24
I think a progressive notion of connectedness is appropriate, as reluctant

as I am to admit it.
Consider an N-indexed family of sets of `cells' Cn and maps ∂n : Cn+1 →

PCn × PCn and vn : Cn → 2. The functions ∂0n and ∂1n are de�ned to
pick out the �rst and second projections of the output of ∂. A cell x ∈ Cn

is called `virtual' if v(r) = 1, and `real' if v(x) = 0. We sometimes leave o�
subscript ns when clear from context.

A set C ⊆ Cn of n-cells is an n-precycle if there is exactly one virtual
x ∈ C. We write k(C) for this unique virtual cell, and C∗ = C \ k(C). A
0-precycle C is a 0-cycle if its cardinality |C| is 2. An (n + 1)-precycle C
is an (n + 1)-cycle if there are maps e : |C∗| → C∗, v : |C∗| + 1 → PCn,
d0, d1 : Cn → C such that

• v(0) = ∂1k(C)

• v(|C∗|) = ∂0k(C)

• ∀i ∈ |C∗|.v(i+ 1) ∪ ∂0(e(i)) = v(i) ∪ ∂1(e(i))

(�C is connected�) and

∀i ∈ {0, 1}.∀x ∈ C.∀y ∈ ∂ix.di(y) = x

(�C is balanced�)
A pair (D,C) ∈ PCn ×PCn is an n-span if C and D are both n-cycles

and k(C) = k(D).
A structure (Cn, ∂, v) is a �at ω-graph if

• ∂nx is a span for every n and x ∈ Cn+1.

• For each n span (C,D), there is exactly one virtual cell x ∈ Cn+1

such that ∂x = (C,D).

An ω-graph is a �at ω-graph together with an equivalence relations ≡n

on each Cn as well as a family of functions {dxy
in : ∂ix → ∂iy |x ≡n y ∈

Cn+1} such that dxz
i = dyz

i ◦ d
xy
i (when all three of x, y, z are equivalent)

and dxx
i = id.

Then an ω-category would be an ω-graph with extra connectedness re-
quirements.

Somehow the mere balance criterion seems intriguing, even though I
know it isn't su�cient to rule out at least two kinds of exotic paths. One
would be like a 1-path that has a disconnected cycle elsewhere, and another

146

one is e.g. a 2-path whose virtual cell �isn't big enough� and so progressing
around the sphere has to �borrow� executions of 1-cells, precisely what the
�progressive� de�nition of connectedness rules out.

I think I can neutralize the problems of extra cycles later on in the
de�nition by saying that the output of composition of an n-path and an
n-path plus an n-cycle must be the same.

2008.3.25
Wait a minute � all this business with paths and stu� looks just like a

sort of free strict n-category, since associativity is on the nose here.
So why not say: a weak n-category is a family of distinguished subsets

Wn of the cells Cn of a strict n-category, which satisfy the property that
for every x ∈ Cn, there is an equivalent y ∈ Wn, where equivalence of
x, y ∈ Cn means there are f, g ∈ Cn+1 such that f ◦ g and g ◦ f are
equivalent to identities.

2008.3.26
Is there any nice way of classifying the harmonic functions on subsets

of in�nite lattices?

I don't think I even need to identify a subset of a strict ω-category to
achieve the descriptive bene�ts I expect to get � so here I am most close
to believing that I've simply made an error and fooled myself into thinking
I don't need to be particularly sophisticated about coherence.

But I sure would like to know the error I'm making, if any, by simply
saying that the data required to specify a weak ω-category are the cells of a
strict ω-category by shifting one's perspective on what composition means
� that a cell `is a composite' of a pair of cells if it is equivalent in the sense
generated by the two rules

f : A→ B : g fg ≡ id gf ≡ id

A ≡ B A ≡ A

to the actual composite in the strict ω-category, which e�ectively just
represents paths.

2008.3.27
Maybe the subset perspective is useful to eliminate even the possibility

of canonical compositions, though?

2008.3.28
Need to collect counterexamples from TL38. One in particular that I

want to think about is the one where (weak) pattern inversion is unsound,

147

since there's a performance worry that pushing through those substitutions
all the way might be expensive.

2008.3.29
A V -category where V is a monoidal category is a set X of objects and

V -objects h(x, y) for x, y ∈ X, and arrows ◦ : h(y, z) ⊗ h(x, y) → h(x, z)
and id : I → h(x, x).

This seems kind of like saying: take a bicategory B, each of whose
homsets resembles V . Choose a mapping k from X to objects of B. For
every pair of objects, choose a distinguished 1-cell hxy : kx→ ky. Demand
that we have a �composition 2-cell� for any f : kx→ ky that goes f ⇒ hxy.

Or, realizing that a monoidal category should be a bicategory where
every object is equivalent and not necessarily identical, just say an enriched
category is a bicategory B with hxy : x → y and composition 2-cells f ⇒
hxy for each f : x → y. B is then `locally enriched' over whatever the
homcategories happen to be. Not sure how best to impose associativity.

Maybe it falls out of saying: an enriched category is a bicategory where
every homcategory has a terminal object, and maybe horizontal composi-
tion has to preserve that terminal object. Then again maybe not - the set
of (object of) paths over morphisms is not necessarily isomorphic to the
direct morphisms. Nah, even terminality seems highly suspect.

2008.3.30
A locally enriched category is a subbicategory of a bicategory, where

every homset has a terminal object. It is only required to be (and almost
certainly will only be) terminal from the perspective of the subcategory of
the homset.

A category enriched over a monoidal category V is such a thing where
every object is equivalent, and every homset (prior to considering the dis-
tinguished subcategory of that homset) looks like V .

Better still: a locally enriched category is a bicategory where every
homset has a terminal object. A category enriched over a monoidal cate-
gory V is a bifunctor from a locally enriched category into V considered
as a bicategory with one object. But really we would just enrich over a
bicategory!

Consider speci�cally the bicategory whose objects are some setX, whose
1-cells are strings over X, and whose two-cells s1 → s2 is an injective order-
preserving map showing how s2 is a subsequence of s1. Composition of
s1 : a → b and s2 : b → c is given by `mediated concatenation' s1bs2.
The other compositions should be obvious. The local terminal object is the
empty string. Maps from this to a monoidal category V seem to look like

148

categories enriched over V also.

I am not totally certain about this, but it looks like the obvious sort of
notion of arrow from one (locally-terminal bicategory over V) to another
actually does express the appropriate notion of preservation of composition.
Indeed the bicategory doesn't really need to be locally-terminal for this
de�nition to make sense.

The weird thing is that in order to de�ne the bicategorical structure on
categories enriched over V , I seem to need that V only has one object.

So let a monoidal category V be given. A V -category is a bicategory B
and a bifunctor f : B → V . A V -functor (B1, f1)→ (B2, f2) is a bifunctor
B1 → B2 that makes the obvious triangle commute. The category of V -
categories has a monoidal structure. We take the cells of B1⊗B2 to be pairs
of objects from B1 and B2, and f1 ⊗ f2 is computed pointwise � we take
advantage of the fact that V has only one object to punt on the question
of how we `compose' objects. Maybe the whole construction would work if
we are trying to build a less-monoidal category from a more-monoidal one.

2008.4.1
Making glue stretchability a torsor found a bug in my pasting-diagram

layout code in a nice way.

2008.4.2
Even a pasting-diagram interpretation of the free braided monoidal cat-

egory seems really hard to formalize.

Maybe if the 1-cells were also essentially 2-dimensional?

2008.4.3
Consider taking the free category of a category: there are more paths

than used to be arrows. One gets what I'd expect to be an accurate `weak
categorical' picture if you import 2-cells corresponding to composition facts
from the original category, but I'm not sure if this is su�cient.

2008.4.4
How can one make `micro-code-reuse' easier? How about the same for

proofs? The trouble is the background setup required for various functions.
Not everybody agrees on the canonical way to de�ne groups, so their proofs
are slightly di�erent. On the other hand, there come to be agreements
about simple (and I only mean simple in a subjective way) types, so that
little combinators having to do with like option and list and stu� are pretty

149

transportable, because we all agree that option and list are standard useful
things.

2008.4.5
I want to ask, `what is mathematics?' but I know there's no real is

there.
Mathematics is a word, and its denotation is a big hazy high-dimensional

blob that joins up with computer science at one end, and physics at another,
and economics at yet a third, and poetry and sheep-counting and accounting
and surveying and astronomy at various others.

Asking whether one particular activity `really is' mathematical or not
is to be a european diplomat quibbling over whether Alsace-Lorraine really
belongs to France or Germany or what-have-you.

On the other hand, we can all basically agree that Paris is in France.
And while mathematics has no universally agreed-upon center either,

no more than it has certain boundaries, there are some themes that �nd
themselves smeared over the rough center of what we all basically agree is
de�nitely mathematics.

I should like to think more about these: formality, abstraction, the
�delity and precision of communicating of mathematical ideas, logic, quan-
ti�cation, proof.

2008.4.6
On bias: imagine that there is an election among population P between

options 1 and 2. If 1 is chosen, some subset D1 ⊆ P are penalized 100
utils. Similarly if 2 is chosen, D2 ⊆ P are penalized 100 utils. There are
agents a1, a2 that respectively receive 1000 utils if 1, 2 is chosen. Consider
the following cases:

• only a1 knows D1, only a2 knows D2

• only a1 knows D2, only a2 knows D1

• everyone knows D1, D2

2008.4.7
Is there a reasonable notion of category with arrows violating strati�-

cation of dimensions?
I imagine something along the following lines. We're given a set C of

cells and an action of the monoid of binary strings ∂v : C → C (where
v ∈ 2n) and an involution �⊥ such that ∂vx

⊥ = (∂v̄x)⊥.
If for all v with |v| = n we have ∂1v̄f

⊥ = ∂1vg, then n-horizontal
composition f ∗n g is well-de�ned and has boundary

((∂0g)⊥ ∗n−1 (∂0f)⊥)⊥ → ∂1f ∗n−1 ∂1g

150

Why is ∂1f ∗n−1 ∂1g well-de�ned? It's because for all |v| = n − 1 we
have (∂0v1f)⊥ = ∂1v1g. How about (∂0g)⊥ ∗n−1 (∂0f)⊥? It's because for all
|v| = n− 1 we have (∂0v(∂0g)⊥)⊥ = ∂1v(∂0f)⊥ because

∂1v̄0g = (∂0v̄0f)⊥

Grr this involution stu� is too tricky still. Let me try the original
thought I had that is less uniform.

Still take C and an action ∂v : C → C of 2n on C. Also a map
id : C → C. ∗n is an operation taking f and g such that ∂0vf = ∂1vg for
all v ∈ 2n. We require:

∂i(f1 ∗0 f0) = ∂ifi

∂i(f ∗n+1 g) = ∂if ∗n ∂ig

∂i(id x) = x

It should be that (C, ∗n, id) forms a category for every n... I'm not sure
how best to impose the other associativities.

2008.4.8
I need to recall under what conditions one can actually recover the type

of a variable in HLF. There was a funny simpli�cation rule that seemed to
apply.

2008.4.9
Typographic layout faces the same problem as type inference that it

has information that you want to �ow bottom-up, and information that
you want to �ow top-down.

It's even more complicated because horizontal spacing and vertical spac-
ing for a given primitive might �ow in di�erent directions.

And for a single primitive, there might be some information �owing
up and some �owing down even within in the same direction, but this we
actually have encountered before in types: it seems like simple types should
always be pushed bottom-up, and re�nements on top of them subtly go up
and down based on the bidirectional type-checking that we're used to.

In type inference we also have uni�cation which is `every way at once'
just trying to satisfy constraints. The way tom7 talks about his ideal layout
algorithm, he seems to take this perspective, that we ought to just write
scoring algorithms and worry about algorithms for optimizing them later.

All quantities below are to be non-negative. A pair of a list of half-
integers ~h and a list of integers ~z is a split vector of size ~d if (rev~h)@~z ≤ ~d.

151

A diagram of size ~d is a map δ from all the split vectors of size ~d to cells
such that

∂i(δ(~h, ~z)) = δ(tl~h, (hd~h+ i/2) :: ~z)

Where ∂−1 = dom and ∂1 = cod. Composition is a map from diagrams
to cells that is appropriately domained and associative.

Let morphisms between objects be strings of objects; and 2-cells be
duals of order-preserving injections among these strings. Composition of
1-cells s : a→ b and t : b→ c is sbt : a→ c.

2008.4.11
I would like to think of composition as `removal of obstructions' but

this seems to require bicategorical thinking even to get categories, hardly
breaking even.

2008.4.13
Suppose we have Pn

m. The Pn
0 are given, and Pn

m+1 is a list of Pn
m

satisfying certain composition constraints. dom and cod go from Pn
m to

Pn−1
n−1 . Still basically ∂ : Pn+1 → listn(Pn)2 . . . but I know this doesn't

work.
How about I have just C and a compatibility relation ⊆ listnC× listnC?

1. If ab and ac and db then dc

2. If ba and ca and bd then cd

3. If aibi for all i then ~a~b.

2008.4.14
How do you do measure theory on Qn when everything is countable,

and therefore presumably of measure zero? It seems like some box-counting
limit should still exist.

2008.4.15
Consider the totality of globular sets that come equipped with compo-

sition functions. Call this G.
Current (globular) de�nitions of weak n-category select a subset of this

totality as being `associative enough'
I could also �lter G by imposing the restriction that the globular set

arises as a subset of the cells of a strict n-category, and the composition
functions are pointwise equivalent (in the coinductive sense, and with this
notion of equivalence taking place in the strict n-category) to those of the
strict n-category's.

152

Conjecture: these permit exactly the same elements of G.
One direction: Suppose I have a globular set of 0-, 1-, 2-cells that is

an `equicomposition'-closed subset of some strict n-category C. I want to
see that this same set of cells with the same compositions is a bicategory.
Equivalence of 2-cells is axiomatically identity.

Because of this, (vertical) 2-cell composition in the weak (putative)
bicategory is the same as in the strict, so each homset does form a category.
Likewise composition ∗ : B(B,C) × B(A,B) → B(A,C) is a functor: If I
have

α1 : f1 → g1 : A→ B
β1 : g1 → h1 : A→ B
α2 : f2 → g2 : B → C
β2 : g2 → h2 : B → C

then ∗(β2 ◦ α2, β1 ◦ α1) = ∗(β2, β1) ◦ ∗(α2, α1)...
oh wait, no. Equivalence of 2-cells is a little more subtle. For horizontal

composition, the domain and codomain require mediator cells so that asking
for equivalence with the strict 2-category horizontal composition even makes
sense.

2008.4.16
A `choice of analogues' is su�cient to determine a composition I think.

2008.4.17
Speci�cally:
Let C be a strict n-category.
A set ι : S → C over the cells of C equipped with maps α,¬ : S → S, is

an analogy for C if

• ¬¬x = x.

• dom(ι¬x) = cod(ιx).

• dom(ιαx) = (ι¬x) ◦ (ιx).

• cod(ιαx) = iddom(ιx).

A map k : C → S is a choice of analogues for C if dom ι(k(x)) = x
for all x ∈ C. The range of an analogy rng ι is the set of cells in C that
hereditarily are the codomain of some analogy cell.

We can de�ne `compositions' on the range of an analogy, which yield
analogy points

f ∗0 g = k(f ◦0 g)

f ∗n+1 g = cod(ιk(ιk(dom f ∗n dom g) ◦0
(f ◦n+1 g) ◦0

153

ι¬k(dom f ∗n dom g)))

??? These are not associativity or exchange on the nose, but up to coherent
isomorphisms.

Conjecture All weak ω-categories arise in this way.

2008.4.18
A toplogy speci�es which sets are open. Consider a ditopological-

ish structure that speci�es which posets (on subsets of it) are `compati-
ble'/`acceptable'.

2008.4.19
My favoring of in �Church on simple types, Curry on everything else�

super�cially resembles LISP hackers' love of sexps. For the de�nition of
simple types isn't entirely formally clear to me yet; thinking about type
reconstruction in HLF convinced me that very probably the universal quan-
ti�er really does leave a simple trace, and yet generally I believe that which
base type you're at oughtn't survive. One of the important criteria is just
that the `less typed' thing is still expressive enough to faithfully embed all
the data items you're interested in, but already the natural numbers satisfy
this.

2008.4.20
From thoughts long ago, I can represent complexes of polygons in 2-

categorical fashion very easily. The missing bit seems only to make the
interpretation of a vector biadjoint to its reverse, so that I don't have to
think carefully about the progression of time.

By contrast, to think about a planar `graph' where it's really the color-
ings of the cells that matter, I live properly in the Poincaré dual.

2008.4.21
Reading through a textbook, Peter Szekeres's �Mathematical Physics�,

am concerned about the fact that the canonical commutation relation

[A,B] = i~I

can only be true in an in�nite-dimensional Hilbert space. It's sort of
blatantly obvious, since the trace on the left would be zero and i~k on the
right for a k-dimensional space.

2008.4.22
Let me try to be less tricky about this.
Let a strict n-category be given. Choose a subset W of its cells, with

the property that W is closed under domain and codomain.

154

A set [�] : S → C over the cells of C equipped with maps α,¬ : S → S,
is an analogy for C if

• ¬¬x = x.

• [αx] : [¬x] ◦ [x]→ iddom[x].

Let C′ be the cells of C whose domain and codomain are both in W , in-
cluding without restriction all objects of C. A choice of analogues is a map
k : C′ → S such that dom[kx] = x and cod[kx] ∈W .

This choice of analogues gives rise to composition operators on W . Let
un = w ◦n v.

w ∗0 v = cod[ku0]
w ∗1 v = [k(codu1)] ◦0

cod[ku1] ◦0
[¬k(domu1)]

w ∗2 v = [k(codu2)] ◦0
(id[k(cod2 u2)] ◦1

cod[ku2] ◦1
id[¬k(dom2 u2)]) ◦0

[¬k(domu2)]

This suggests
w ∗n v = M0

n

Mm
n =

idm([k(codm+1 un)]) ◦m
Mm+1

n ◦m
idm([¬k(domm+1 un)])

if m < n;

cod[kun] if m = n

No, this isn't quite right. I don't feel good about [k(codu2)] in the
de�nition of w ∗2 v. It should be [k(codw ∗1 cod v)].

I think I'd rather de�ne ∗ to give the whole mediating cell inductively
and take its cod after the fact.

Also I don't seem to use α intrinsically.
Just takeW,U ⊆ C, mappings �−1, α : U → U with α : x−1x→ iddom x

and (x−1)−1 = x. Let C′ be as before {x ∈ C |domx ∈ W ∧ codx ∈ W}
and suppose we have k : C′ → U such that dom(kx) = x and cod(kx) ∈W .
De�ne precomposition by

w ∗n v = kE0
n

Cm
n = codm w ∗n−m codm v

155

Dm
n = domm w ∗n−m domm v

Em
n =

{
idm(Cm+1

n) ◦m Em+1
n ◦m idm((Dm+1

n)−1) if m < n;
w ◦n v if m = n

The compositions in C and D are obviously justi�ed. Claim I:

∂(cod(w ∗n+1 v)) = cod(∂w ∗n ∂v)

To see that Em+1
n ◦m idm((Dm+1

n)−1) and idm(Cm+1
n)◦mEm+1

n are justi�ed,
we want to know

dom(Dm+1
n) = domm+1Em+1

n

dom(Cm+1
n) = codm+1Em+1

n

or to reduce notation

dom(Dm
n) = dommEm

n

dom(Cm
n) = codmEm

n

for m ≥ 1. It's easy to check for n = m. Suppose n > m.

dom(f ∗n g) = E0
n

Observe also

Dm
n (domj w,domj v) = Dn+j

m+j(w, v)

Cm
n (domj w,domj v) = Cn+j

m+j(w, v)

Em
n (domj w,domj v) =?

dom(Dm
n) = dom(domm w ∗n−m domm v)

dommEm
n = domm(idm(Cm+1

n) ◦m Em+1
n ◦m idm((Dm+1

n)−1))

= Cm+1
n ◦0 dommEm+1

n ◦0 (Dm+1
n)−1

= Cm+1
n ◦0 Dm+1

n ◦0 (Dm+1
n)−1

I've �gured it out now. Let ∂ stand for dom or cod and ∆ for C or D.

156

First show
∆m

n (∂′a, ∂′b) = ∆m+1
n+1 (a, b)

which is pretty easy. Using this in the step case m < n, we can see

Em
n (∂a, ∂b) = ∂Em+1

n+1 (a, b)

The base case m = n is just the property of boundaries we expect for ◦n+1.
Iterate this to get

E0
n−m(∂ma, ∂mb) = ∂mEm

n (a, b)

the left side of which is also dom(∆m
n). And this is what we need to license

the two compositions in the de�nition.
What we also want is ∂(a�n+1 b) = ∂a�n ∂b where a�n b = E0

n(a, b).
But this follows by

∂(a�n+1 b) = ∂(E0
n+1(a, b))

= ∂(C1
n+1(a, b) ◦0 E1

n+1(a, b) ◦0 (D1
n+1(a, b))

−1)

= cod(∆1
n+1(a, b))

= cod(∂a ∗n ∂b)

= cod(kE0
n(∂a, ∂b))

= E0
n(∂a, ∂b)

= ∂a�n ∂b

Once again, the de�nition of everything:
Let W,U ⊆ C, mappings �−1, α : U → U with α : x−1x→ iddom x and

(x−1)−1 = x. Let C′ be as before {x ∈ C |domx ∈ W ∧ codx ∈ W} and
suppose we have k : C′ → U such that dom(kx) = x and cod(kx) ∈ W .
De�ne composition by

∆m
n (a, b) = k(∂ma�0

n−m ∂mb)

a�m
n b ={

idm(Cm+1
n (a, b)) ◦m (a�m+1

n b) ◦m idm(Dm+1
n (a, b)−1) if m < n;

a ◦n b if m = n

2008.4.23

Having an involutive �−1 on elements of the strict ω-category doesn't
seem to be right; consider a category with f, g : A→ B and h : B → A and

157

F,G : A→ A where compositions are determined by the earliest nonidentity
arrow. Then f and g both compete for h has their inverse.

Maybe I could relax involutivity to Brouwer's theorem, but certainly I
can get by with de�ning twist and α on bicomposable pairs.

2008.4.24
Involutivity doesn't seem to matter after all for determining the status

of a single cell as equivalence or not; I can coalesce inverse pairs.

2008.4.24
Something I didn't appreciate about Lie algebras before: if you try to

compute products of exponentials, you can describe them with the com-
mutators of generators; a fact that looks suspiciously like needing dis-
tributive laws for composition of monads. Compare λ : ST → TS with
[T, S] = TS − ST .
2008.4.25

I actually sort of expect a theory of data dependency to look exactly
like a parametrized proof irrelevance:

Γ⊕Φ ` A

Γ ` 3ΦA

Γ, A possΦ ` C

Γ,3ΦA ` C

Where Γ⊕Φ is de�ned by

(A possΦ′)
⊕Φ = A possΦ′\Φ

and by convention poss∅ = true.

2008.4.26
For type operators in the image of the translation of LLF we have the

property
If x : A@α ∈ Γ and x appears in M and Γ `M ⇐ B[p], then p ≥ α.

2008.4.27
Restart on weak ω-categories for the millionth time.
Let C and W ⊆ C. De�ne CW to be those cells of C that have domain

and codomain in W . De�ne C◦ to be the set of bicomposable pairs of
cells in C. Let C• be the maximal subset of C◦ closed under swap and
(f, g) 7→ (fg, id).

(C,W, k, k−1) is a weak ω-category if C is a strict ω-category, W ⊆
C, k, k−1 : CW → C satisfying dom(kx) = x and cod(kx) ∈ W and
(kx, k−1x) ∈ C•.

Based on this we can de�ne �nx,�−1
n x, so that x ∗n y = �n(x ◦n y).

The invariant for �n is that domn+1 and codn+1 are already in W .

158

�0x = kx

�1x = �0(k codx ◦ x ◦ k−1 domx)

�2x = �1(kc2x ◦1 x ◦1 k−1d2x)

Still not quite right.

A general thought on planning: it is good to have loci of accumulation.
What are mine?
My notebooks.
This �le.
My subversion repository.

Some kind of monotonicity should generalize the splitting property of
LLF, not usre what.

Enjoyed words from Kubla Khan: incense, revive, mingled, fragments,
enfolding, device, honey, sacred.

2008.4.28
A story of a prophecy that fails to come true.
The idea that immersive entertainment is an admixture of creating new

places and discovering them. Imagine 15th-century European criticizing
the New World as not real, admiting however that people have been there.
Its fault is that it's a waste of time.

The role of belief in a deity as the mechanism by which we expect to be
altruistically punished even in isolation from other people.

�Ambrose, I've had enough.�

2008.4.29

Let there be kd
n where d ∈ {/, .}. The invariant of �n is that the ∂n

are already in W . The output is entirely in W .

�d
0x = x

�n+1x = (k.�n(codx) ◦ x ◦ k/�n(domx))

No, this isn't right either.
It should totally fall out as a unary version of composition. Let me try

to do that.

∆m
n (a, d) = idm(kd(�0

n−m−1∂
m+1
d a))

159

�m
n a =

{
∆m

n (a, .) ◦m (�m+1
n a) ◦m ∆m

n (a, /) if m < n;
a if m = n

Actual transfer into W is given by x 7→ cod(k�x).

2008.4.30
Apparently it's quite standard to view irreps as orbits. I'm still puzzling

over Dolan's description of the orbisimplex.

2008.5.1
Understanding the monotonicity property I want for coverage checking

is di�cult at higher-order function types, unsurprisingly.

2008.5.2
I think I may have it, now. Rp

q is a predicate on types, with p input and
q output. Lq

~p is a predicate on types, with both q and ~p input.

Rp
p(a · S)

Lε
· (A) Rp

q(B)

Rp
q(A→ B)

Rr
q(A)

Rp
q(A@r)

Rp
q([p/α]A)

Rp
q(↓α.A)

Rp
q(A)

Rp
q(∀α.A)

q ≤ p1 · · · q ≤ pn

Lq
~p(a · S)

Rε
r(A) Lq

~p,r(B)

Lq
~p(A→ B)

Lr
~p(A)

Lq
~p(A@r)

Lq
~p([q/α]A)

Lq
~p(↓α.A)

Lq
~p([r/α]A)

Lq
~p(∀α.A)

2008.5.3
Do I really need to keep track of a context in the de�nitions above?

2008.5.4
Is all energy in the universe packaged in discrete multiples of ~, or is

it just any particular system that has a quantized energy spectrum? I can
imagine matrices with whatever eigenvalues I like, but maybe the universe
is more choosy than that.

2008.5.5
To divide into k sections with margin m, I must have k divides 402 −

m(k − 1), equivalent to k | 402 +m.

Regarding the system from the 2nd.

160

The interpretation of Lq
~p is: if you're eliminating the type starting at

q, the result will be below everything in ~p, and everything is monotone
hereditarily. The interpretation of Rp

q is: if you start with p (on the right),
you get out q.

Lemma 0.25 If A ∈ LLF , then Rp
p(A), and Lp

p(A).

Lemma 0.26 If Lq
~p and ~r ⊆ ~p, then Lq

~r.

Lemma 0.27 If everything in the context and signature is Lε
· , and some

variable x : A ∈ Γ actually occurs in M with Lε
~p(A), and Rr

q(B), and
Γ `M ⇐ B[r], then q ≥ ~p.

2008.5.5

Lemma 0.28 If A ∈ LLF , and q ≤ p then Rp
q(A). If A ∈ LLF , and q ≤ ~p

then Lq
~p(A).

Proof of (case:

i.h.

Lα
· (A)

Lε
· (A@α)

i.h.

Rα∗p
q (B)

Rp
q(B@(α ∗ p))

Rp
q(A@α→ B@(α ∗ p))

Rp
q(↓β.A@α→ B@(α ∗ β))

Rp
q(∀α.↓β.A@α→ B@(α ∗ β))

i.h.

RX
r (A)

Rε
r(A@X)

i.h.

LX∗q
~p,r (B)

Lq
~p,r(B@(X ∗ q))

Lq
~p(A@X → B@(X ∗ q))

Lq
~p(↓β.A@X → B@(X ∗ β))

Lq
~p(∀α.↓β.A@α→ B@(α ∗ β))

Lemma 0.29 Suppose every type in the context and signature is Lε
· .

1. If a variable x : A ∈ Γ occurs in M with Lε
~p(A), and Rr

q(B), and
Γ `M ⇐ B[r], then q ≥ ~p.

2. If a variable x : A ∈ Γ occurs in S with Lε
~p(A), and Γ ` S : B[r] >

c[q], then q ≥ ~p.

161

3. If Lr
~p(A) and Γ ` S : A[r] > c[q], then q ≥ ~p.

Proof By induction.

1. Lambda case is easy. We preserve the invariant by inspection.

Variable case: ...

2.

3.

Remember:
Words are not points.
Economic value is torsorial.
The vast majority of economic value is essentially speculative.
With bounded rationality, the estimation of value should propagate

along something like the heat equation, which critically makes sense �
because the Laplacian makes sense � even for torsors, even on undirected
graphs.

2008.5.6
Testing uni�cation. Running prop-calc/sources.cfg. Error message:

equiv.elf:13.1-13.38 Error:
Typing ambiguous -- unresolved constraints
A1 = A2 x;
A1 = A2 x;
A3 = A4 x;
A3 = A4 x.

Smaller counterexample:

o : type.
f : o -> o -> o.
pred : o -> type.
k : pred (f A (f B A)).
pair : pred (f A (f B (f A B))).
mp : pred (f A B) -> pred A -> pred B.
abs : (pred A -> pred B) -> pred (f A B) -> type.
apair : abs ([x] pair) (mp k pair).

Smaller still:

162

o : type.
pred : o -> type.
pair : pred A.
abs : (o -> pred A) -> type.
apair : abs ([x] pair).

2008.5.8

Γ ` s s ∗ q ≥ p

Rp
q;∆(a · S)

Lε
· (A) Rp

q;∆(B)

Rp
q;∆(A→ B)

Rp
q;∆,α(A)

Rp
q;∆(∀α.A)

p ≥ q

Lp
q(a · S)

Rε
r;·(A) Lp

q(B) q ≥ r

Lp
q(A→ B)

Lp
q([X/α]A)

Lp
q(∀α.A)

Lemma 0.30 Suppose Lε
∗(Γ)

1. If Lε
r(A) and Rp

q;∆(B) and x : A ∈M and Γ `M : B[p] then exists s
in ∆ such that s ∗ q ≥ r.

2. If Lε
r(A) and x : A ∈ R and Γ ` R : a[p] then p ≥ r

3. If Lε
r(A) and x : A ∈ S and Lq

s(B) and Γ ` S : B[q] > a[p] then
p ≥ r.

4. If Lq
r(A) and Γ ` A[q] > a[p] then p ≥ r.

Proof

2008.5.9
What is the role of monotonicity when introducing free variables? Pos-

sibly none. Not sure. Probably should con�ne monotonicity reasoning to
splitting rather than let it infect uni�cation.

2008.5.10
Let a set X and a a �nitely additive measure µ over X be given. That

is, µ(∅) = 0, µ(X) = 1, µ(A]B) = µA+ µB, and 0 ≤ µA ≤ 1 for all A.
This lets me interpret statements like p(A∧B)+p(¬C) ≥ 1/2 as µ(A∩

B) + µ(X \ C) ≥ 1/2.
Say the syntax is something like

Propositions A ::= > | ¬A | A1 ∧A2

Arithmetic Expressions E ::= µA | r | E1 + E2

Sentences S ::= E1 ≥ E2 | E1 = E2

163

Where r is a real number. Let a theory T , a set of statements, be given.
I wish to prove a completeness theorem, like: if T � S, then T ` S. So
we're going to take such a T and construct a syntactic model from it. Its
points are (classical propositional logic) provability equivalence classes of
propositions. If we look at any set X of those, we have to determine a
measure for it. It ought to be bounded below by any r such T ` Pr(A) ≥ r
for some A in X, and bounded above by any r such that T ` Pr(A) ≤ r
for some A not in X... No, that doesn't work.

Dang, it really seems that I need to pass to Boolean algebras generally,
rather than dealing with concrete powersets.

* * * * * *
I could scale back to saying:
T � Pr(A) = 1 i� T ` A, but this seems too weak to be interesting.

* * * * * *
But just to page it back in, why is classical logic complete for interpre-

tation in powersets?
Let Γ be given. The points of the syntactic model are provability equiv-

alence classes of propositions entailed by Γ, but leave out the one that ⊥ is
in. Interpret each proposition as the set of propositions that (together with
Γ) entail it. If a proposition is entailed by Γ, its denotation is the entire set.
If its denotation is the entire set, it includes >, and by de�nition (using cut
elimination and the fact that > is immediately provable) it's entailed by Γ
alone. This is as desired.

We must only show that this de�nition is actually intersection on ∧ and
complement on ¬.

First: We have IΓ(A) and IΓ(B), the set of consistent propositions that
with Γ prove A and B, respectively. We want to con�rm IΓ(A∧B) is equal
to their intersection. Let C ∈ IΓ(A∧B) be given, which yields a derivation
Γ, C ` A ∧ B. By inversion Γ, C ` A and Γ, C ` B. Likewise we can use
∧I to get from the two derivations to the one.

Second: We have C ∈ IΓ(¬A) and wish to show C 6∈ IΓ(A). This is
easy, because we would get a contradiction otherwise. To see the other half,
that if C 6∈ IΓ(¬A), then C ∈ IΓ(A), we have to consider two possibilities.
One, Γ, C 6` ¬A... Oh. I had to restrict attention to `worlds' where all
propositional atoms are decided from the beginning.

Oh man, maybe that syntactic proof of focussing's correctness via trans-
lation into ordered logic works nicely after all.

Make up two atoms / and ..

A = v+F+ | v−F−

164

F+ = F+ ⊗ F+ | d+A

F− = F+ (F− | d−A

De�ne
←−
X and

←−
A and

−→
X and

−→
A :

←−
A =!(/.�←−A)
−→
A = /. •!−→A

X
←−
X

−→
X

v+F+ / •
←−
F+ • .

−→
F+

v−F−
←−
F− /�

−→
F−

d+A .� (. •
←−
A) /.�

−→
A

d−A /. •
←−
A .�

−→
A

F+
1 ⊗ F

+
2 .� (

←−
F+

1 •
←−
F+

2 • .)
−→
F+

1 •
−→
F+

2

F+ (F−
−→
F+ �

←−
F−

←−
F+ �

−→
F−

Now prove:

Lemma 0.31

1.
←−
F+ • . a` . •!

−→
F+

2. .�
←−
F− a`

−→
F−

3.
←−
A ; /. `

−→
A

4.
−→
A ; /. ` ←−A .

Proof By induction on the proposition.

1. Forward d+:
Part 3

←−
A ; /. `

−→
A

←−
A `!(/.�

−→
A)

. •
←−
A ` . •!(/.�

−→
A)

.� (. •
←−
A), . ` . •!(/.�

−→
A)

165

Backward d+:
Part 4
−→
A ; /. ` ←−A
−→
A ` ←−A

/.�
−→
A ; /. ` ←−A

/.�
−→
A ; · `

←−
A

/.�
−→
A ; · ` .� (. •

←−
A)

−−→
d+A; . `

←−−
d+A • .

Forward ⊗:

., !
−→
F+

1 , !
−→
F+

2 ,` . •!(
−→
F+

1 •
−→
F+

2)
←−
F+

1 , ., !
−→
F+

2 ,` . •!(
−→
F+

1 •
−→
F+

2)
←−
F+

1 ,
←−
F+

2 , . ` . •!(
−→
F+

1 •
−→
F+

2)

.� (
←−
F+

1 •
←−
F+

2 • .), . ` . •!(
−→
F+

1 •
−→
F+

2)

Backward ⊗:

XXX−→
F+

1 •
−→
F+

2 ; . ` . •!
−→
F+

1 •!
−→
F+

2

−→
F+

1 •
−→
F+

2 ; . `
←−
F+

1 • . •!
−→
F+

2

−→
F+

1 •
−→
F+

2 ; . `
←−
F+

1 •
←−
F+

2 • .

(
−→
F+

1 •
−→
F+

2); · ` .� (
←−
F+

1 •
←−
F+

2 • .)

(
−→
F+

1 •
−→
F+

2); . ` (.� (
←−
F+

1 •
←−
F+

2 • .)) • .

2. Forward d−:
Part 3

←−
A ; /. `

−→
A

(/. •
←−
A) `

−→
A

.� (/. •
←−
A) ` .�

−→
A

166

Backward d−:
Part 4
−→
A ; /. ` ←−A
−→
A ; · `

←−
A

−→
A ; /. ` /. •

←−
A

−→
A ` /. •

←−
A

.�
−→
A ` .� (/. •

←−
A)

Forward(:
−→
F+ �

←−
F−,
−→
F+ ` ←−F−

.� (
−→
F+ �

←−
F−), .,

−→
F+ ` ←−F−

.� (
−→
F+ �

←−
F−),

←−
F+, . ` ←−F−

.� (
−→
F+ �

←−
F−),

←−
F+ ` −→F−

.� (
−→
F+ �

←−
F−) `

←−
F+ �

−→
F−

Backward(:

←−
F+ �

−→
F−,
←−
F+ `

−→
F−

XXX←−
F+ �

−→
F−,
←−
F+, . `

←−
F−

←−
F+ �

−→
F−, .,

−→
F+ `

←−
F−

←−
F+ �

−→
F− ` .� (

−→
F+ �

←−
F−)

3. v+F+ case:

Part 1
−→
F+, . ` . •!

−→
F+

/, ., !
−→
F+ ` /. •!

−→
F+

/, ., !
−→
F+ `

−−−→
v+F+

cut

/,
←−
F+, . `

−−−→
v+F+

←−−−
v+F+ `

−−−→
v+F+

/.�
←−−−
v+F+, /. `

−−−→
v+F+

167

v−F− case:

/. ` /.

←−
F− `

←−
F−

←−−−
v−F−, /, . `

←−
F−

←−−−
v−F−, / ` .�

←−
F−

Part 2

.�
←−
F− �

−→
F−

cut←−−−
v−F−, / `

−→
F−

←−−−
v−F− `

−−−→
v−F−

←−−−
v−F−; · `!

−−−→
v−F−

←−−−
v−F−; /. ` /. •!

−−−→
v−F−

4. v+F+ case:

/ ` /

Part 1
−→
F+; . `

←−
F+ • .

−→
F+; /. ` / •

←−
F+ • .

−−−→
v+F+; /. `

←−−−
v+F+

v−F− case:
Part 2

−→
F−, . `

←−
F−

/�
−→
F−; /. `

←−
F−

−−−→
v−F−; /. `

←−−−
v−F−

Corollary 0.32 If
←−
Γ ; /. `

−→
A and

←−
Γ ,
←−
A ; /. ` C, then

←−
Γ ; /. ` C.

Proof From part 4 of the above we can also derive

/. ` /.

−→
A ; /. ` ←−A
−→
A ` ←−A

/.�
−→
A, /. ` ←−A

(/.�
−→
A) `

←−
A

!(/.�
−→
A) `!

←−
A

!(/.�
−→
A), /. ` /. •!

←−
A

By a pair of cuts in ordered logic, we obtain the desired result.

168

Ok, so there are a couple problems with ! in the `backwards' directions
of 1 and 2, which are essentially about cut. Probably a bang needs to go

in
−→
d+ not in part 1.

2008.5.11
Think I �xed up the stu� from yesterday. Turns out the cut lemma

needs to not quite be symmetric with identity. Bummer.
Still don't know how to properly reason about CPS-converted stu�.

Should go back and look at Petri net encodings.

2008.5.13
Idea from Tom: `play' and `stop' terminology for focusing.

2008.5.14
Hacking on Twelf uni�cation.
Debugging `technique' (i.e. gross hack) for uni�cation: Add UnifyTrail

and Print to the toplevel sources.cm and also to the sources.cm inside fron-
tend. Add to unify.sml:

val debug : (IntSyn.dctx * IntSyn.Exp -> string) option ref

= ref NONE

fun trace x = print (Option.valOf (!debug) x)

And to unify.sig:

val debug : (IntSyn.dctx * IntSyn.Exp -> string) option ref
val trace : IntSyn.dctx * IntSyn.Exp -> unit

And then after compiling run

UnifyTrail.debug := SOME Print.expToString;

And then trace can be called from inside unify.
Note to self: trying to print the expression half of an eclo totally isn't

going to work, because it refers to variables in the closure of course. Whnf
it.

Oh, but Whnf returns another eclo. I suppose I should get Print to
actually print the entire eclo. The constructor EClo takes it back into exp?

Excellent, turns out that works. Apparently X1 = X2 x is the uni�ca-
tion problem coming in at the top-level and it's still failing to be solved. Is
this merely because I didn't implement pruning?

To checkout twelf:

svn co https://cvs.concert.cs.cmu.edu/twelf/trunk twelf

169

Thinking about the thing Frank sketched:

∆; Γ ` C[p]

∆; Γ ` C[÷p]

∆; Γ, A[α] ` C[÷α]

∆; Γ,3A[p] ` C[÷p]

∆; Γ ` C[÷p]

∆; Γ ` 3C[p]

∆, A; Γ ` C[p]

∆; Γ,�A[p] ` C[p]

∆; Γ ` C[a]

∆; Γ ` �C[p]

A ∈ ∆ ∆; Γ, A[q] ` C[p]

∆; Γ ` C[p]

2008.5.15
Thinking about how to represent Pfenning-Davies even more primitively

than Frank's recent encoding, by translation into a located linear logic with
�rst-order connectives.

∆; Γ ` C[p] 7−→ ��∆,Γ;C → t[p] ` t[p]

∆; Γ ` C[÷p] 7−→ ��∆,Γ;C → t[p], w[α] ` t[p]

��A = ∀α.(A@α)

33A = ∃α.(A@α)

©A = (A→ ��t)(t

3A = (∃α.(A→ ��t)@α)(w

�A =©(∀α.A@α)

Γ, A[p];C → t[p] ` t[p] Γ; t[p] ` t[p]

Γ,3A[p];C → t[p] ` t[p]

Γ; (∃α.(A→ 33w)@α) ` 33w

Γ;∃α.(A→ ��t)@α ` w[p]

Γ; · ` 3A[p]

170

∆; Γ, A[α] ` C[÷α]

∆; Γ,3A[p] ` C[÷p]

∆; Γ ` C[÷p]

∆; Γ ` 3C[p]

Not quite working. Think I need a mixture of something like p⊗(p(A)
and the CPS monadic encoding.

2008.5.16
I think I got it.

(3A)? = q((∃α.(q ⊗A?)@α)

(�A)? = p((p⊗ ∀α.A?@α)

(A⇒ B)? = p((p⊗ (A∗ ⇒ B∗))

and similar to ⇒ for other connectives.
Does one really need to make the forall embedded in the de�nition of �

feel asynchronous on the left? This is what Frank does, but I don't see its
necessity.

2008.5.17
Deepak suggested yesterday maybe even linearity could be dispensed

with if you used enough �rst-order quanti�ers.

2008.5.21
Something gone weird with the encoding of JS4; can't tell whether the

sequent calculus should allow left decompositions `in the monad', or at
di�erent worlds, or both, or neither. One example to watch out for besides
the standard

3A→ �B ` �(A→ B)

is the similar
A→ �B ` �(�A→ B)

which should not be provable even in Simpson S4, but should be in S5.

2008.5.23

A† = t((t⊗A∗)

(A ∧B)∗ = A† ∧B†

(3A)∗ = w((∃α.(w⊗!A†)@α)

(�A)∗ = ∀α.A†@α

171

∆; Γ ` At[p] ↔ (�∆)∗,Γ†; t[p] ` (t⊗A∗)[p]

∆; Γ ` A poss [p] ↔ (�∆)∗,Γ†;w[p] ` ∃α.(w ⊗A†)@α[q]

2008.5.24

Γ; f(x) ` A

Γ;x ` $A

Γ, A; g(y) ` C

Γ, $A; y ` C
We expect theorems

Γ, A; ε ` A
Γ;x ` A Γ, A; y ` C

Γ;x ∗ y ` C

and have an identity rule

Γ, a; ε ` a
To do the identity cases we want ε ∗ x = x = x ∗ ε.

For the connective:
Principal: f(x) ∗ g(y) = x ∗ y (if g(y) ↓ and f(x) ↓)
RC: f(x ∗ y) = x ∗ f(y) (if f(y) ↓)
LCL: g(x ∗ y) = g(x) ∗ y (if g(x) ↓)
LCR: g(x ∗ y) = x ∗ g(y) (if g(y) ↓)

2008.5.25
Truth-functional, classical interpretations of logic seem very bottom-up,

or rather, the type at which they are bottom-up are boolean functions over
free propositional variables. This is the only kind of information that gets
passed up; the interface through which other connectives view them.

Is there some answer to the question of `what gets passed up' for con-
structive logic that isn't the full intension of the proposition, or else some
nasty blob of modal, semantic data?

2008.5.26
Deepak mailed me his authorization logic thing. I wonder about the dif-

ference between a system that has lots of modalities with one distinguished
one that is truth full stop, and his, which seems to be much more a�ne
about principals.

2008.5.27
The main di�culty in �guring out once and for all what connectives can

be created from operations on context full of rather arbitrary judgmental
gadgets is �guring out what the cut and identity principles ought to be.

172

2008.5.29
Let M be a manifold.
A derivation in M at x is a function D : C∞(M)(R such that

D(fg) = (Df) · g(x) + f(x) · (Dg)

The tangent bundle of M is de�ned as the collection of derivations at
each point.

Let Ix be the ideal {f ∈ C∞(M) | f(x) = 0}. The cotangent bundle of
M is de�ned as T ∗xM = Ix/I

2
x.

We want to show that these two are actually dual.
Given a derivation D, we generate a dual element of the cotangent

bundle (a map Ix/I
2
x (R) by simply taking in an element of Ix and

hitting it with D. Why does this respect the quotient by I2
x? Because

by the de�nition of product ideal any f ∈ I2
x decomposes as

∑
i figi for

fi, gi ∈ Ix, and so D(f) = D(
∑

i figi) =
∑

i fi(x)Dfi + gi(x)Dgi = 0.
Given a map r : Ix/I2

x (R, we can generate a derivation by setting
D(f) = r(f−f(x)+I2

x). This is pretty obviously linear, and we are certainly
handing r something that's zero at x, so let's check the Leibniz law.

D(fg) = r(gf − g(x)f(x) + I2
x)

= r(f(x)g + g(x)f − 2g(x)f(x) + I2
x)

= r(f(x)g − f(x)g(x) + I2
x) + r(g(x)f − g(x)f(x) + I2

x)

= r(g − g(x) + I2
x)f(x) + r(f − f(x) + I2

x)g(x)

= (Dg)f(x) + (Df)g(x)

With the �rst equality being justi�ed by

(g − g(x))(f − f(x)) = gf − f(x)g − g(x)f + g(x)f(x) ∈ I2
x

Finally we want to believe these two transformations are inverse to one
another. Starting with a derivation D, turning it into a co-cotangent vector
D : Ix/I2

x → R, and turning it back into a derivation, we get D(f − f(x) +
I2
x) = Df − 0 + 0. (Why is a derivation is zero on constant functions?
Leibniz says D1 = D(1 · 1) = 1D1 + 1D1 = 2D1, so D1 = 0, and by
linearity all constant functions must yield zero).

Starting with a co-cotangent r : Ix/I2
x → R, we turn it into a derivation

r(f − f(x) + I2
x) and then back into a co-cotangent by restricting f to be

in Ix/I
2
x. Then r(f) = r(f − f(x) + I2

x) = r(f + I2
x).

173

2008.5.30
Remember that the cause of my bug might be composition of substitu-

tions. There is no guarantee of η-longness internally.

2008.6.1
Lagrangian mechanics take place in the tangent bundle TM of position

space; Hamiltonian in the cotangent bundle T ∗M .
I think of tangent vectors as being sort of more `dual' than `natural' since

they are derivations on scalar functions. But the established terminology
runs opposite to that; covectors are dual to vectors, and they are the things
that di�erentials must be.

2008.6.2
I have a pile of loose research ends, and at any time I do not know

what they are. Doing a bit of bookkeeping helped me see clearly where my
money was going, allowed me to see for instance how much I was actually
devoting to food. I should like to do the same sort of �ashlight-waving at
various other mental habits/structures.

It seems to remain important to me that I feel like I own a project
to feel inclined to work on it. Ownership is not necessarily exclusive; I am
intrinsically motivated to work on this telegraph key hack with lea, because
it is fun. Nor the converse: my thesis project is highly self-directed, but
the obligation to do it feels external.

I really would like a nice mechanical proof of correctness of certain linear
token-passing protocols I've come up with � I ought to lean on these for
motivation.

Loose ends that I can think of right now:

• diagrammatic notation for sequents

• simple-type polymorphism in LF

• contextual form in LF

• token-translation completeness of focusing

related to thesis work

• uni�cation implementation

• labelled uni�cation

• monotonicity

174

It's di�cult to publish something like simple-type polymorphism that
has unclear application, and many known disadvantages, but I should like
to publicize it all the same.

2008.6.5
Interesting stu� about units in `Elements of Physics' by Tarantola. He

seems to claim at achieve agnosticism not only on the issue of, say, m vs.
cm, but also m vs. m2.

2008.6.6
It seems possible that proof irrelevance as a logic is just two indepen-

dent monads composed together. Proving soundness of this translation is
strangely tricky, though.

2008.6.7
To show: that a proof in

Γ ` A mi

Γ ` ©iA

Γ, A ` C mi

Γ,©iA ` C mi

Γ ` C

Γ ` C mi

implies a proof in

Γ ` A÷

Γ ` ?A

Γ, A ` C÷

Γ, A÷ ` C÷
Γ, A÷ ` C

Γ, ?A ` C
Γ ` C

Γ ` C÷

2008.6.8
Is there any way to think of the quantity �ows in bookkeeping as �ux

across a `spacetime' region, considered very metaphorically?

2008.6.9
Consider nondeterministic translation of the bimonadic system into

proof irrelevance.

A 7→− B

©1©2 A 7→− ?B

A 7→+ B

©1©2 A 7→+ ?B

A 7→ B

©2A 7→− B÷

A 7→ B

©2A m1 7→+ ?B

A 7→ B

©2A 7→+ ?B

A 7→ B

A m2 7→+ B÷

175

A 7→+ B

©2A m1 7→+ B÷

A 7→− B

©2A 7→− B

Lemma 0.33 If (Γ ` A) 7→ (Γ′ ` A′) and Γ ` A then Γ′ ` A′.

2008.6.10
It's frustrating how this proof doesn't seem to yield a good focussing

story, still; for proof-irrelevance as a modality is plainly a connective, but
two monads in a row are not unipolar.

2008.6.11
Seems to be easier to treat all of proof-irrelevant logic as a `monad-

translation' image of a logic with one monad, kind of like how classical
logic is double-negation-translated constructive logic.

2008.6.12
Some aspects of type reconstruction for HLF seem like I worked them

out long ago, but I have a hard time concretely picturing the algorithm.
How can I get an implementation up and running quickly so that I can see
whether, say, the proof of cut elimination can be e�ectively reconstructed
or not?

I worry a little bit about ampersand and top, which I have not thought
carefully about in many places.

2008.6.13

Γ, NA ` C

Γ, NA ` C ṁ

Γ,�NA ` C ṁ

Γ ` A

Γ, A ` C÷

Γ, A ` 4C

Γ ` 4C

Γ, B÷ ` A

Γ,4B ` A Γ, A ` C÷

Γ ` C÷
More like:

Γ, A?, B? ` γ

Γ, A ∧B ` γ

Γ, A ` C

Γ, A? ` C
Γ ` C÷

Γ ` 4C
Γ, A? ` C÷

Γ,4A ` C÷
Γ ` C

Γ ` C÷

176

2008.6.14
Focussed syntax of indexed monadic logic:

Positive A+ ::= ↓ A− | A+ ⊗B+

Negative A− ::= ↑ A+ | A+ (B− | ©−
i Ei

Monadic Ei ::= ©+
i A

+

The translation I expect wants to wrap the truth-monad around positive
things � at least, in that boundary where negative things are outside and
positive things are inside. The steady state is

Γ− ` �+A+ ṁ

If we focus on something on the left, we'll eventually hit an up-shift,
which is where the translation ought to insert a �−�+. This will appro-
priately require ṁ on the right. After that will be asynchronous work. If
we focus on the right, we'll continue through the positive stu�, and then
asynchronously tear through negative work, �nally decomposing �−.

Question: is it the negative �nish or the positive begin that translates
to �−�+? Or is it one each?

2008.6.15
I think if I replace ↑ by© and ↓ by �, I preserve provability and restrict

proofs in a way that sort of approximates focussing.

Consider logic with the connectives partially polarized

Positive A+ ::= A− | A− ⊗B− | A− ⊕B− | 1 | 0 | p+

Negative A− ::= ↑A+ | A+ (B− | A− & B− | > | p−

but with just standard unfocussed rules. Notice that positive formulae here
are strictly more general than negative, and that usually positive connec-
tives take negative arguments because they do not e�ectively chain. We
have for the shift simply

Γ ` A+

Γ ` ↑A+

Γ, A+ ` C+

Γ, ↑A+ ` C+

So consider replacing that shift with ©:

Γ ` A+

Γ ` A+ m

Γ ` A+ m

Γ ` ©A+

Γ, A+ ` C+ m

Γ,©A+ ` C+ m

177

Plainly we prove nomore things in this system. For if there is a proof in that
system, just erase all monadic judgments to truth. We may also see that we
prove no fewer, as long as the correspondence is with sequents A+, · · · , A+ `
A− in the original calculus. For if there is a proof in the original calculus,
there is one that eagerly does all asynchronous decompositions, including
tearing o� ↑ on the right.

If Γ ` A−, then Γ∗ ` (A−)∗.
If Γ ` A+, then Γ∗ ` (A+)∗ m.
Like in twelf:

pos : type.
neg : type.

inj : neg -> pos.
up : pos -> neg.
tensor : neg -> neg -> pos.
oplus : neg -> neg -> pos.
amp : neg -> neg -> neg.
lol : pos -> neg -> neg.
top : neg.
1 : pos.
0 : pos.

t : type.
shift : t.
circ : t.

phyp : pos -> type.
nhyp : neg -> type.
pconc : t -> pos -> type.
nconc : t -> neg -> type.
mon : pos -> type.

tensorL : (phyp (tensor A B) -> pconc T C)
<- (nhyp A -> nhyp B -> pconc T C).

tensorR : pconc T (tensor A B)
<- nconc T A
<- nconc T B.

injL : (phyp (inj A) -> pconc T C) <- (nhyp A -> pconc T C).
injR : pconc T (inj A) <- nconc T A.
shiftL : (nhyp (up A) -> pconc shift C)

<- (phyp A -> pconc shift C).

178

shiftR : nconc shift (up A) <- pconc shift A.
circL : (nhyp (up A) -> mon C) <- (phyp A -> mon C).
circR : nconc T (up A) <- mon A.
monR : mon A <- pconc circ A.

2008.6.16
Quick little perl script that iteratively chunks bigrams that are way more

frequently occurring than would be expected from the relative frequencies
of their components.

#!/usr/bin/perl
use strict;

sub learn {
my (@t) = @_;
my (%freq, %bigram, %rat, %good);

$freq{$_}++ for @t;
for (1..$#t) {

$bigram{$t[$_-1] . ";" . $t[$_]}++;
}
for (sort {$bigram{$b} <=> $bigram{$a}} keys %bigram) {

my ($x, $y) = split /;/, $_;
my $act = $bigram{$_} / (@t - 1);
my $exp = ($freq{$x} / @t) * ($freq{$y} / @t);
$rat{$_} = $act / $exp;

}

for (sort {$freq{$b} <=> $freq{$a}} keys %freq) {
print "$_: $freq{$_}\n";
}

for (sort {$rat{$b} <=> $rat{$a}} keys %rat) {
my $p = $_;
$p =~ s/;//;
if ($bigram{$_} >= 5 && $rat{$_} >= 5.0) {

$good{$_} = 1;
print "$p: $bigram{$_} $rat{$_}\n";

}
}

my @out;

179

while (@t) {
my $head = shift @t;
if (@t) {

my $cand = "$head;$t[0]";
if ($good{$cand}) {

shift @t;
$cand =~ s/;//;
push @out, $cand;

}
else {

push @out, $head;
}

}
else {

push @out, $head;
}

}
return @out;

}

my $txt;

{local $/; $txt = <>}

$txt =~ s/ / /g;
my @c = split //, $txt;

for (1..18) {
@c = learn(@c);
print "--\n";

}
print join "", map {length() > 1 ? "($_)" : $_} @c;

2008.6.17
I expect the proof-irrelevant modality to wind up as �#, but it's still a

mystery to me why that system works at all when I can't come up with a
`synthetic' system that satis�es cut.

It seems to require synchronous focussing reasoning on the left to prove
it correct � speci�cally to see that negative connectives can't be left-
decomposed during the monadic promotion phase.

180

2008.6.18
Have been reading `The Design of Everyday Things'. I am a little skep-

tical of the way Donald Norman uses the word `logic'. He seems to use it to
denote those inferences that people `naturally' make when trying to �gure
out the mapping between controls and behavior. What's clear is that if
you toss a device in front of a sample of people, they'll do something, but
it seems hard to me to separate what is culturally learned from what is
intrinsically `natural' or `logical' or whatever.

Another nearby concept is iconicity, the peculiar property of the iso-
morphism between well-laid-out controls on a stovetop and the burners:
a spatial isomorphism that only involves scaling and translation, and no
rotation. I �nd it hilariously ironic that on pages 76-77 of DOET, the very
diagrams that are criticizing label-dependent arbitrary layouts require la-
bels to connect them to the pieces of text on the same page that describe
them, for they are not laid out in an isomorphic way.

I think the lesson is, anyway: know your audience, and maximize the
chance that they will guess the right thing. Study your intended audience to
�nd out the patterns of their guesses. There may be reliable rules of thumb
as to what they will guess, but introspection is, as a rule, a terrible way of
�nding them, and constant empirical reevaluation seems quite important.

I expect to translate

Props A ::= A⇒ /E | /E
Monadic Props E ::= .(A⊕B) | .(A⊗B) | .A

Γ, A ` E m

Γ ` A⇒ /E

Γ ` A Γ, E m ` F m

Γ, A⇒ /E ` F m

Γ ` A Γ ` B

Γ ` .(A⊗B) m

Γ, A,B ` F m

Γ, .(A⊗B) m ` F m

Γ ` Ai

Γ ` .(A1 ⊕A2) m

Γ, A1 ` F m Γ, A2 ` F m

Γ, .(A1 ⊕A2) m ` F m

Can I prove identity for focussing without tokens, as long as I have
`standard' connectives �oating around?

Props A ::= · · · | A⊗B | v+F+

Positive Props F+ ::= · · · | F+ ⊗ F+ | d+A

181

Want to show A ` A for all A.
So show v+F+ ` v+F+ for all F+. So I want to be able to cut in

something like `(F+)∗ ` v+F+' where ∗ turns a focused proposition back
to normal.

2008.6.19

Let there be a preorder (P,≤), typical element x.
Syntax is

Props A ::= FxA | UxA | A ∧B | A ∨B | A⇒ B

The judgment is Γ ` A[x] where Γ is composed of B[y] where by invari-
ant each y ≥ x.

A prop[x] B prop[x]

A ? B prop[x]

y ≤ x A prop[x]

FxA prop[y]

y ≤ x A prop[y]

UyA prop[x]

Γ
∣∣
≥x
` A[x]

Γ ` FxA[y]

Γ, A[x] ` C[z]

Γ, FxA[y] ` C[z]

Γ ` A[y]

Γ ` UyA[x]

y ≥ z Γ, A[y] ` C[z]

Γ, UyA[x] ` C[z]

Γ, A[x] ` B[x]

Γ ` A⇒ B[x]

Γ ` A[x] Γ, B[x] ` C[z]

Γ, A⇒ B[x] ` C[z]

#xyA = UyFxA
y ≤ x A prop[x]

#xyA prop[x]

2xyA = FxUyA
y ≤ x A prop[y]

2xyA prop[y]

3xyA = 2xy(A(p)(p

4xyA = FxUyFxA
y, z ≤ x A prop[x]

4xyA prop[z]

2008.6.20
The thing from yesterday is so close to Deepak's system, but not quite

the same. Not sure what is going on.

2008.6.21
Consider the following two sequences:

182

(A) The number of downward closed subsets of the powerset of n. (2,
3, 6, 20, 168, 7581, 7828354)

(B) The number of antichain covers of n. That is, set covers of n that
include no pair of subsets that are related to each other by ⊆. (1, 2, 9, 114,
6894, 7785062)

(B) is also the number downward closed subsets of the powerset of n that
include all singletons. More trivially, (A) is also the number of monotone
boolean functions of n variables. These are apparently called the `Dedekind
numbers' and there's no known nice closed form for them.

Turns out (A) is the inverse binomial transform of what you get if you
stick a 2 in front of (B). That is, the `derivative of (A) at time 1' is 3-
2=1. The `second derivative' is (6-3)-(3-2) is 2. The `third derivative' is
((20-6)-(6-3))-((6-3)-(3-2))=9. etc.

2 1 2 9 114 6894
3 3 11 123 7008
6 14 134 7131
20 148 7265
168 7413
7581

If we take only nonempty downward closed subsets
1 1 2 9 114 6894
2 3 11 123 7008
5 14 134 7131
19 148 7265
167 7413
7580

This makes more sense as there ought to be exactly one antichain cover
of ∅ as well as {∗}.

Oh this whole tableau makes sense in a rather simple way. Let cnk be the
numberof antichains not containing the empty set in a set of n+ k labelled
elements, where the �rst k of them must be covered. Then c(n+1)k =
cn(k+1) + cnk � consider one of the n elements that might be covered or
not. Either it is covered and we consider an antichain with one more covered
and one fewer maybe-covered (cn(k+1)) or else it is not covered and we need
to come up with an antichain with one fewer maybe-covered (cnk). cn0 is
(A)-1 and c0k is (B).

2008.6.22
Schur’s lemma says any map φ : Cn (Cn that commutes with an

irreducible �nite-dimensional representation ρ : G→ (Cn (Cn) of a group
G is a scalar.

183

Why? Well, the fundamental theorem of algebra says φ has an eigen-
value, call it λ. How big is the eigenspace Eλ? Well, it's left invariant by
the action of ρ. For let g ∈ G be given, and v ∈ Eλ. We want to con�rm
that ρgv ∈ Eλ. So notice φ(ρgv) = ρg(φv) = ρg(λv) = λ(ρgv). Since ρ
was assumed irreducible, Eλ can't be any smaller than the whole space:
Eλ = Cn. So the action of φ on any vector is to multiply it by λ, QED.

2008.6.23
Torben Braüner points out that if we have nominals that are also propo-

sitions that are true when we arrive at that world, general downarrow is
de�nable.

↓x.A ≡ ∀x.(Herex → A)

2008.6.24
Can the synchronous choice required by &,⊕ be decomposed as a com-

bination of adjoint passage from one judgment to another and otherwise
simple connectives? A & B = F (UA⊗ UB)

Γ, At ` Ct+

Γ, UA ∗, UB ∗ ` Ct+

Γ, UA⊗ UB ∗ ` Ct+

Γ, F (UA⊗ UB)t− ` Ct+

It seems inevitable that any compound `connective' that uses any amount
of transport can't uniformly be positive or negative because it must make
some round-trip back to truth.

How about: keep right-hand side typically at m and

A & B = F (¬U¬A⊗ ¬U¬B)

Γ, A ` # m

Γ, A ` U⊥

Γ ` ¬A

Γ,¬F¬B m ` F¬A m

Γ,¬F¬A m,¬F¬B m ` # m

Γ, U(¬F¬A⊗ ¬F¬B)t ` # m

184

2008.6.25
Synthetic hypersequent rule from A ∨ ¬A: First we get

` A|A `

then
G|Γ,Γ′ ` Π

G|Γ ` Π|Γ′ `
Can we classically prove (A ∧ B ⇒ C) ⇒ (A ⇒ C) ∨ (¬B)? Yes, of

course. But the converse of this rule is already available, just by local
weakening and hypercontraction.

So really a multiple conclusion sequent A1, . . . An ` B1, . . . , Bm is an
intuitionistic hypersequent canonically

A1 `| · · · | An `|` B1 | · · · | Bn

2008.6.26
Gröbner bases are sets of multivariate polynomials for which division

still yields a unique answer. That is, we have polynomials g and f1, . . . , fn

and we wish to divide g by the fs. We nondeterministically pick an fi

and muliply it by a polynomial enough for its leading term to cancel some
term of g � this requires an ordering on monomials. Having cancelled a
term of g, we will only leave behind junk that's smaller in the monomial
ordering. For general bases f1, . . . , fn this division algorithm gives di�erent
answers, but the surprising fact is that we can pass to a Gröbner basis which
generates the same ideal.

2008.6.27
Atomic propositions are just top and bottom at arbitrarily removed

judgments, maybe?
Consider a positive atom. It should be able to asynchronously remain

on the left. So make up a new judgment that is stronger than all the others.
Say p+ = F+p. On the left it transitions to `p valid'?

2008.6.28
At least in linear logic, F and U satisfy the following:

U(FA(B) = A⇒ UB

U(A & B) = UA ∧ UB

FA⊗ FB = F (A ∧B)

185

FA⊕ FB = F (A ∨B)

U> = t

1 = F t

0 = F f

2008.6.29

And so this `explains' why !(A & B) =!A⊗!B, for FU(A & B) =
F (UA ∧ UB) = FUA⊗ FUB.
2008.6.30

It makes sense that (A(p)(p and p((A ⊗ p) are both monads,
because � (p is self-adjoint considered as a contravariant functor, and
obviously p(� is right adjoint to �⊗ p. Notice that both propositional
functions are negative on the outside, and positive on the inside.

2008.7.1
It doesn't seem quite as clear to me as it used to that polarization-as-

modalization should work both ways around implication.
If positive is mapped to strong and negative to weak, I need to map

A+ ⇒ B− to something like

FA+∗ ⇒w B−∗

in which case the F is contiguous with the positive argument. If, how-
ever, the mapping goes the other way around, I seem to be forced to map
B+ ⇒ A− to either

UB+∗ ⇒s A−∗

and interrupt the �rst argument of ⇒ or

U(B+∗ ⇒w FA−∗)

and interrupt the second.

2008.7.2

Negative Props N ::= ↑P | P ⇒ N
Positive Props P ::= ↓N | P ∨ P | 4P
Strong Props A ::= UB | U ′B′ | A⇒ A
Weak Props B ::= FA | B ∨B

Weak' Props B′ ::= F ′A

186

�∗ maps P to B and N to A.P− = UP ∗

N− = N∗

(P÷)− = U ′F ′UP ∗

P+ = P ∗

N+ = FN∗

(P÷)+ = F ′UP ∗

(↑P)∗ = UP ∗

(↓N)∗ = FN∗

(P ⇒ N)∗ = UP ∗ ⇒ UFN∗

(P1 ∨ P2)∗ = FUP ∗1 ∨ FUP ∗2
(4P)∗ = FU ′F ′UP ∗

Lemma 0.34
Γ ` X ⇔ Γ− ` X+

Proof Right to left is easy; insertion of Us and F s naturally only restricts
proofs. Left to right involves the following cases.

Γ ` P

Γ ` ↑P
⇔

Γ− ` P ∗

Γ− ` UP ∗

Γ− ` FUP ∗

Γ, P ` X

Γ, ↑P ` X
⇔

Γ−, UP ∗ ` X+

Γ−, UP ∗ ` X+

Γ ` N

Γ ` ↓N
⇔

Γ− ` FN∗

Γ− ` FN∗

Γ, N ` X

Γ, ↓N ` X
⇔

Γ−, N∗ ` X+

Γ−, FN∗ ` X+

Γ−, UFN∗ ` X+

Γ, P ` N

Γ ` P ⇒ N
⇔

Γ−, UP ∗ ` FN∗

Γ−, UP ∗ ` UFN∗

Γ− ` UP ∗ ⇒ UFN∗

Γ− ` F (UP ∗ ⇒ UFN∗)

Γ ` P Γ, N ` X

Γ, P ⇒ N ` X
⇔

Γ− ` P ∗

Γ− ` UP ∗

Γ−, N∗ ` X+

Γ−, FN∗ ` X+

Γ−, UFN∗ ` X+

Γ−, UP ∗ ⇒ UFN∗ ` X+

Γ, Pi

Γ ` P1 ∨ P2

⇔

Γ− ` P ∗i
Γ− ` UP ∗i

Γ− ` FUP ∗i
Γ− ` FUP ∗1 ∨ FUP ∗2

187

Γ, P1 ` X Γ, P2 ` X

Γ, P1 ∨ P2 ` X
⇔

Γ−, UP ∗1 ` X+

Γ−, FUP ∗1 ` X+

Γ−, UP ∗2 ` X+

Γ−, FUP ∗2 ` X+

Γ−, FUP ∗1 ∨ FUP ∗2 ` X+

Γ−, U(FUP ∗1 ∨ FUP ∗2) ` X+

Γ ` P÷

Γ ` 4P
⇔

Γ− ` F ′UP ∗

Γ− ` U ′F ′UP ∗

Γ− ` FU ′F ′UP ∗

Γ, P÷ ` X

Γ,4P ` X
⇔

Γ−, U ′F ′UP ∗ ` X+

Γ−, FU ′F ′UP ∗ ` X+

Γ−, UFU ′F ′UP ∗ ` X+

Γ ` P

Γ ` P÷
⇔

Γ− ` P ∗

Γ− ` UP ∗

Γ− ` F ′UP ∗

Γ, P ` Q÷

Γ, P÷ ` Q÷
⇔

Γ−, UP ∗ ` F ′UQ∗

Γ−, F ′UP ∗ ` F ′UQ∗

Γ−, U ′F ′UP ∗ ` F ′UQ∗

I seem to be putting in a lot of interruptions into the translations of
connectives in order to make the proof easy even without focussing reason-
ing. Perhaps this focussing reasoning can be expressed merely as identities
about the adjoint connectives, combined with idempotency of the monad?

Do I get for instance

FU(FUB1 ∨ FUB2) = FUB1 ∨ FUB2

?

FUB1 ∨ FUB2 ` FUB1 ∨ FUB2

U(FUB1 ∨ FUB2) ` FUB1 ∨ FUB2

FU(FUB1 ∨ FUB2) ` FUB1 ∨ FUB2

UBi ` UBi

UBi ` FUBi

UBi ` FUB1 ∨ FUB2

UBi ` U(FUB1 ∨ FUB2)

UBi ` FU(FUB1 ∨ FUB2)

FUBi ` FU(FUB1 ∨ FUB2) ∀i

FUB1 ∨ FUB2 ` FU(FUB1 ∨ FUB2)

188

Yes, apparently! In fact,

FU(FA1 ∨ FA2) = FA1 ∨ FA2

(Back in Pfenning-Davies land, we'd just say �(�A ∨ �B) = �A ∨ �B)
which I can explain by

FU(FA1 ∨ FA2) = FUF (A1 ∨A2) = F (A1 ∨A2) = FA1 ∨ FA2

Because generally
FUF = F UFU = U

So it seems I can characterize positive connectives as those which are im-
pervious to FU and negative connectives as those that are impervious to
UF . This seems to allow the simpli�ed clauses

(P ⇒ N)∗ = UP ∗ ⇒ N∗

(P1 ∨ P2)∗ = P ∗1 ∨ P ∗2
but as soon as I make that de�nition, they lose that property, don't they?
Or maybe I'm not using the induction hypothesis properly. Supposing that
FUPi = Pi, then FU(P1∧P2) = FU(FUP1∧FUP2) = FUF (UP1∧UP2) =
F (UP1 ∧ UP2) = FUP1 ∧ FUP2 = P1 ∧ P2. Okay, perfect.

Being positive or negative on the inside can be characterized by invari-
ance under replacing an argument X with FUX or UFX, respectively?

Clearly connectives `imported' from the other strength trivially satisfy
this property (e.g. negative ↑P is translated to UP ∗, so it's trivially nega-
tive because UFUP ∗ = UP ∗) so it is a generalization to propositions that
`e�ectively' are imported.

Oh, this is just the trivial fact that: FUB = B just in case there exists
an A such that FA = B. In one direction, UB is the witness, otherwise,
FUB = FUFA = FA = B.

Still seems like it ought to be possible to modally capture more of fo-
cussing discipline, especially somehow incorporating netural propositions.

Consider a preorder with neutral in the middle and two judgments above
and below it. Could one map a negative phase, say, to �rst jumping up and
spending most of your time below, and a positive phase to jumping down
and spending most of your time above? Or vice-versa?

The troubling thing about the preorder discipline is that it requires one
to stabilize on high things on the left and low things on the right � bad
conditions for trying to stabilize on neutrality on both.

189

The other goal with this is to show that I can push all the positive
connectives (and the argument of implies) back into the strong judgment to
show that the proof irrelevant modality is the two-monad sequence without
translating anything else.

I found what I think is a Celf bug:

o : type.
k : o.
eq : o -> o -> type.
refl : eq A A.
down : (((o -> o) -> o) -> o) -> o.
q : type.
rule : q <- eq (down V) (down (\q:((o -> o) -> o).

q (\r:o.k)))
<- eq U (V (\y:o -> o.y U)).

#query 10 * * 1 q.

�nds a solution, but with the simple reversal of goal order

rule : q <- eq U (V (\y:o -> o.y U))
<- eq (down V) (down (\q:((o -> o) -> o).

q (\r:o.k))).

it does not. I strongly suspect the problem is Anders is taking the equations

u[] = v[λy.y u[]]

v[q] = q (λr.k)

and transforming the �rst, via overzealous lifting of _, to

u[] = v[_]

thereby invalidating the second.

2008.7.3
If uni�cation is just left rules for equality, then it is a funny kind of bi-

nary judgment, which becomes e�ectively bottom upon disequality. I don't
suppose there's any way of connecting the substructural-nominal intuition
to this? It's di�cult because it also depends on positive evidence of equality
as well as disequality.

190

2008.7.4
I feel like I can spin disjunction as taking negative arguments and trans-

late it
(N1 ∨N2)∗ = FN∗

1 ∨ FN∗
2

2008.7.5
This seems more di�cult with implication. Basically sure that I want

positive on the right to achieve the same e�ect, but what about on the left?
Possibly also positive?

(P1 ⇒ P2)∗ = UP ∗1 ⇒ UP ∗2

On the right (beginning with F (UP ∗1 ⇒ UP ∗2)) we synchronously bite
o� the F and then take the asynchronous decompositions all the way to
the appropriate UP ∗1 ` P ∗2 , and on the left, we get the two goals ` UP ∗1
and (assuming that we don't focus through the U) also UP ∗2 ` C. The �rst
goes to just ` P ∗1 asynchronously.

2008.7.6
So yeah! I don't actually mean to sequence the ∨ and the F s together

on the right to accurately simulate unfocussed reasoning.

2008.7.7
Aleksey emailed me about being interested in proof irrelevance encoded

as two monads. Don't quite understand what he's talking about yet.

2008.7.8
At least now I sort of understand why he wants to weaken the �xpoint

rule � it seems strikingly similar to both callcc and Löb logic somehow. I
can't seem to hit it with the Ciabattoni hammer, since it appears cyclic.

2008.7.9
I re�gured out the translation from a week ago from scratch. The no-

tion that one direction of the proof comes for free is basically wrong, but
everything still works out � they key is to synchronously combine the ⇒
and inner right U in decomposing UP ∗ ⇒ UFN∗ on the left, for instance.

2008.7.10
Given the freedom I have to move Us around negative things and F s

around positive things, it seems I can put the monad UF around positive
things and cast the proof irrelevance monad as either UFU ′F ′ or U ′F ′UF .
Why can or can't I �nd a counterexample to the possibility of erasing most
UF s?

191

No, that's not true � the more I think about it, I am pretty convinced
that if proof-irrelevance is to be two monads, the remaining stu� must be
scattered UF s, and triangle comes out as U ′F ′UF , not as UFU ′F ′.

I'm struck suddenly by the symmetry in

Γ ` A÷

Γ ` 4A

Γ, A÷ ` C

Γ,4A ` C

Γ ` A

Γ ` A÷
Γ, A ` C÷

Γ, A÷ ` C÷

especially if one says

True Props A ::= 4D | · · ·
Irrelevant Props D ::= ?A

and denotes the true judgment by superscript >. Then the rules are

Γ ` D÷

Γ ` 4D>

Γ, D÷ ` A>

Γ,4D> ` A>

Γ ` A>

Γ ` ?A÷
Γ, A> ` D÷

Γ, ?A÷ ` D÷

and are perfectly symmetric under interchanging (?,A,÷)⇔ (4, D,>).
The cut-elimination proof for this system eluded me before, but now I

think I have it. In heterogeneous cuts like Γ ` A against Γ, A ` C÷ and Γ `
A÷ against Γ, A÷ ` C analyze only the second derivation (the hypothetical
one) for principal cuts could not even occur due to heterogeneity.

This requires (felicitously?) that left-rules for ordinary connectives re-
quire truth on the right. We could also de�ne connectives native to the
proof-irrelevant judgment, which would similarly require proof-irrelevance
on the right.

2008.7.12
The translation also seems to work if I stick everything at weak and

pepper with FU , or stick everything at strong and pepper with UF �
not sure what happens to triangle, then. I thought I had some one-sided
argument to permute some tof the left rules outside the bimonadic phase
shift but I can't see how to apply it. Is the more left-rule-friendly system
actually cut-eliminable? It's weird to see how the cut principle is `di�erent'

192

because of global properties of connectives in one system (namely that the
judgments always match up) which reminds me of how pfenning-style proof
irrelevance di�ered from awodey-bauer � which in turn sort of makes sense.

2008.7.13
Think about this: start with the Jul 2 mixed-strength translation. Reen-

code everything into the strong judgment by substituting, for example,
↑(↓A∨ ↓B) for A∨B, and (↓A)⇒ B for A⇒ B, and ↑4↓A for 4A. This
should not a�ect provability.

So in the resulting translation, we get U(FUFA ∨ FUFB) for A ∨ B,
and UFA ⇒ UFB for A ⇒ B, and UFU ′F ′UFA for 4A. Observe that
everything in this translation has the property that UFX = X. So we
should really get away with UF (A ∨ B) and A ⇒ B and UFU ′F ′A. So
we're back at yes, really, monadizing all the positive things and bimonading
the irrelevance modality should be faithful � well, additionally, I suppose I
am applying F to every conclusion.

2008.7.14
Okay, there are only so many reasonable translations of a given connec-

tive. Under a translation where all weak things in the context are strength-
ened by U and all strong conclusions are weakened by F , the weak trans-
lation of A ⇒ B as FA (FB is at least faithful. The variations of this
weak translation with di�erent inputs are all interde�nable:

FA(FB

FA(FUB

FUA(FB

FUA(FUB

If we hit these on the outside with U we get the four

A⇒ UFB

A⇒ UB

UA⇒ UFB

UA⇒ UB

If we hit these with F we get

F (A⇒ UFB)

F (A⇒ UB)

193

F (UA⇒ UFB)

F (UA⇒ UB)

And if we hit these with U we get back to the second row.
The picture with disjunction and irrelevance looks like

FA(FB UA ∨ UB
FA(FUB UA ∨ UFB U ′F ′UA
FUA(FB UFA ∨ UB U ′F ′UFA
FUA(FUB UFA ∨ UFA

* * * * * *

A⇒ UFB FUA⊕ FUB
A⇒ UB FUA⊕ FB FU ′F ′UA
UA⇒ UFB FA⊕ FUB FU ′F ′UFA
UA⇒ UB FA⊕ FB

* * * * * *

F (A⇒ UFB) U(FUA⊕ FUB)
F (A⇒ UB) U(FUA⊕ FB) UFU ′F ′UA
F (UA⇒ UFB) U(FA⊕ FUB) UFU ′F ′UFA
F (UA⇒ UB) U(FA⊕ FB)

2008.7.15

Let A∗ =©A×. De�ne

(A ? B)× = A∗ ? B∗

(4A)× = ©′A∗

p× = p
(A ? B)· = A· ? B·

(4A)· = ©©′ A·

p· = p

The theorem to prove (or refute!) is

Theorem 0.35 Γ· ` A· i� Γ× ` A×

2008.7.16
Try the following generalization. We say A 7→ A· according to

A 7→ A·

4A 7→ ©©′ A·

A 7→ A·

4A 7→R ©′A· lax

194

A 7→ A·

4A 7→ ©′A·

A 7→ A·

4A 7→R A· lax′

A1 7→ A·1 A2 7→ A·2

A1 ? A2 7→ A·1 ? A
·
2

p 7→ p

Theorem 0.36 If Γ ` A 7→ Γ· ` A· and Γ· ` A·, then Γ× ` A× lax.

Proof By induction on the derivation.

Case:
Γ· ` ©′A· lax

Γ· ` ©©′ A·
7→

i.h.

Γ× ` ©′A∗ lax

Case:
Γ· ` ©′A·

Γ· ` ©′A· lax
7→

i.h.

Γ× ` ©′A∗ lax

Case:
Γ· ` A· lax′

Γ· ` ©′A·
7→

i.h.

Γ× ` ©′A∗ lax

Case:

Γ· ` A·

Γ· ` A· lax′
7→

i.h.

Γ× ` A×

Γ× ` A× lax

Γ× ` A∗

Γ× ` A∗ lax′

Γ× ` ©′A∗

Γ× ` ©′A∗ lax

Case:
Γ·,©′A· ` B· lax

Γ·,©©′ A· ` B· lax
7→

i.h.

Γ×,©′A∗ ` ©′B∗ lax

Case:

Γ·, A· ` B· lax′

Γ·,©′A· ` B· lax′
7→

Γ×, A× ` ©′B∗ lax Γ×,©′A∗ ` ©′B∗ lax

This case seems to be broken.

195

Another tack.
Consider (i) the logic with a `subordinate' modality like the monad (in

contrast to the `superordinate' comonad box) but where decomposing just
that modality is disallowed to be decomposed on the left when the weak
judgment is on the right, and (ii) the logic where all (truth-native) left rules
are forbidden at the weak judgment.

I'm pretty sure I've convinced myself (ii) is analytic, and I suspect (i) is,
too. They ought to correspond roughly to the × and · translations above.

Can I prove them equivalent directly by permuting rules outside of the
weak judgment?

Γ ` A

Γ, B ` C lax

Γ, B ` 4C

Γ, A⇒ B ` 4C

←→

Γ ` A Γ, B ` C lax

Γ, A⇒ B ` C lax

Γ, A⇒ B ` 4C

Γ ` A

Γ, B ` C

Γ, B ` C lax

Γ, A⇒ B ` C lax

←→

Γ ` A Γ, B ` C

Γ, A⇒ B ` C

Γ, A⇒ B ` C lax

Γ, C÷ ` A

Γ, B, C ` D lax

Γ, B, C÷ ` D lax

Γ, A⇒ B,C÷ ` D lax

−→

Γ, C ` A Γ, B, C ` D lax

Γ, A⇒ B,C ` D lax

Γ, A⇒ B,C÷ ` D lax

I only really want to apply the last two of these, and only in the left-to-
right direction (which is the only way that works for the third one anyway)
By assumption I have ripped out all the left rules from the derivation above,
so my case analysis becomes e�ective.

For disjunction I can do

Γ, A ` C

Γ, A ` C lax

Γ, B ` C

Γ, B ` C lax

Γ, A ∨B ` C lax

−→

Γ, A ` C Γ, B ` C

Γ, A ∨B ` C

Γ, A ∨B ` C lax

Γ, A, C÷ ` D lax Γ, B, C÷ ` D lax

Γ, A ∨B,C÷ ` D lax
→

Γ, A, C ` D lax Γ, B, C ` D lax

Γ, A ∨B,C ` D lax

Γ, A ∨B,C÷ ` D lax

The case analysis here is a little delicate � we have to grind away all
the ÷L before both branches of the disjunction are surely right rules.

196

4 remains left-prohibited above the lax judgment, so we need not trans-
form it. I suppose I have to consider sequents with more promoted stu� to
be smaller.

The bimonadic logic is funnily restricted in that in order to peel o� the
�rst layer of proof irrelevance on the left, we have to be at it on the right.

2008.7.17
It's interesting that Twel�ng the monad is easy, but box is tough; be-

cause we have enough of a handle on the conclusion that erasing it is easy,
but not the context.

Still, I think suddenly that I should be able to twelf the proof of the
bimonadic/proof irrelevance thing. The progressive de�nition of proof ir-
relevance and its proof of cut elimination should be feasible in principle,
and a good check that I thought about coverage correctly.

2008.7.18
The proof should work merely by commutation of ordinary rules late

relative to the monadic phase, and commutation early of promotion from
the regular judgment to monadic.

2008.7.19
Ok, so consider the system de�ned by

Γ ` A÷

Γ ` 4A

Γ, A÷ ` C

Γ,4A ` C

Γ ` A

Γ ` A÷
Γ, A ` C÷

Γ, A÷ ` C÷

and left rules for other connectives that require truth on the right.
This should satisfy the cut elimination principle

If Γ ` A∗ and Γ, A∗ ` C?, then Γ ` C?.

As noted on 2008.7.11.
This is the logic that is most transparently equivalent to stanard proof

irrelevance, call it `P . Certainly if Γ `P A, then Γ ` A � I just run
through promotion step by step and get out. I can also show by an easy
induction that

• if Γ ` A then Γ `P A

• if Γ ` A÷ then Γ⊕ `P A

197

We can imagine a derivation system `L (which is not obviosuly cut-
free) where left rules for most connectives are allowed to �re no matter
what the judgmnet on the right. Certainly this system has at least as
many derivations as `, but it also has no more. For we can permute left
rules past promotion until they exit the irrelevant phase.

Γ ` A

Γ, B ` C

Γ, B ` C÷

Γ, A⇒ B ` C÷
−→

Γ ` A Γ, B ` C

Γ, A⇒ B ` C

Γ, A⇒ B ` C÷

Γ, C÷ ` A

Γ, B, C ` D÷

Γ, B, C÷ ` D÷

Γ, A⇒ B,C÷ ` D÷

−→
Γ, C ` A Γ, B, C ` D÷

Γ, A⇒ B,C ` D÷

Γ, A⇒ B,C÷ ` D÷

Actually, wait; in the system `L we still might as well promote all irrelevant
hypotheses as soon as we can. And then we can prove a lemma

Lemma 0.37 If Γ⊕ `L A÷, then Γ⊕ `L A

because no rule other than 4L (which still requires truth on the right)
introduces ÷ on the left, which is the only thing that can take advantage
of ÷ on the right.

The other part is to see that `L is equivalent to `M , in which by de�-
nition 4A on the left is only allowed to be decomposed against 4A on the
right.

2008.7.20
To see that is relatively easy, for we do transformations that push 4L

later.

Γ, C÷ ` A Γ, B, C÷ ` D

Γ, A⇒ B,C÷ ` D

Γ, A⇒ B,4C ` D

−→
Γ, C÷ ` A

Γ,4C ` A

Γ, B, C÷ ` D

Γ, B,4C ` D

Γ, A⇒ B,4C ` D

Γ, C÷, A ` B

Γ, C÷ ` A⇒ B

Γ,4C ` A⇒ B

−→
Γ, C÷, A ` B

Γ,4C,A ` B

Γ,4C ` A⇒ B

Now we want to show that 4 in this system is e�ectively ©©′. Say X©

is de�ned by (4A)© with ©©′ (A©), and (A÷)© with ©′(A©), and all
else homomorphic.

198

Lemma 0.38

• If Γ© ` A©, then Γ `M A.

• If Γ© ` ©′(A©) lax, then Γ `M 4A.

• If Γ© ` A© lax′, then Γ `M A÷.

Proof By induction.

Lemma 0.39

• If Γ `M A, then Γ© ` A©.

• If Γ `M 4A, then Γ© ` ©′(A©) lax.

• If Γ `M A÷, then Γ© ` A© lax′.

Proof By induction, taking especial advantage of the right-invertibility of
© and ©′.

2008.7.21
I �nd it nonetheless frustrating that I still don't know any way to phrase

these rule-permutation arguments as cut derivations.

2008.7.22
Science is rejection of proof by authority at an institutional level; can

this work at a personal level? How often should one distrust one's own
memories and go out and experiment again?

2008.7.23
Reading some fascinating notes by Conway and collaborators about cur-

vature. The nice thing about it is its description of several examples of
things that wind up being essentially about the Euler characteristic of a
polyhedron/facial graph.

Speci�cally: the angle de�cit at a vertex is kind of like the curvature
there. If we consider the dual polyhedron projected as a spherical polygon
onto the `celestial sphere' then the area of the face corresponding to each
original vertex is the same as the angle de�cit � so of course the total angle
de�cit is constant for topologically spherical graphs.

2008.7.24
Let a platonic solid be given, with n faces each of which is an m-gon,

of which k join at each vertex.

199

It has Euler characteristic 2 = F − E + V = n − (nm/2) + (nm/k) =
n− nm(1/2− 1/k). Solving for n we get

n =
2

1−m(1/2− 1/k)
=

4k
2k −m(k − 2)

We want k > 2, m > 2, n > 1.
If k = 3, then we're looking for an m such that 6−m divides 12. Thus

m could be 3 (tetrahedron) or 4 (cube) or 5 (dodecahedron).
If k = 4, then we're looking for an m such that 8−2m divides 16. Thus

m could be 3 (octahedron).
If k = 5, then we're looking for an m such that 10 − 3m divides 20.

Thus m could be 3 (icosahedron).
Suppose k ≥ 6 and that

4k
2k −m(k − 2)

has an integer solution.

m =
k

k − 2
2n− 4
n

Now k/(k − 2) shrinks as k grows; so if k ≥ 6, k/(k − 2) ≤ 6/4. Also
2n−4

n is strictly bounded above by 2. So if k ≥ 6 then m < 2(6/4) = 3.

2008.7.25
The incidence algebra on a locally �nite poset is the vector space of

functions that assigns scalars to intervals. The algebra structure is a
convolution-like multiplication

(f ∗ g)(a, b) =
∑

a≤x≤b

f(a, x)g(x, b)

Associativity comes from

f ∗ (g ∗ h)

=
∑

a≤x≤b

f(a, x)
∑

x≤y≤b

g(x, y)h(y, b)

=
∑

a≤x≤y≤b

f(a, x)g(x, y)h(y, b)

=
∑

a≤y≤b

 ∑
a≤x≤y

f(a, x)g(x, y)

h(y, b)

200

= (f ∗ g) ∗ h

2008.7.26

Could substitute a much less �exible mechanism for monotonicity (say,
construction out of (n for n ≥ 1) just for the thesis work, as long as it
satis�es the appropriate property out at the end, and mention that a more
sophisticated analysis might also be possible.

2008.7.27
Talked with gwillen a bit about socially-negotiated ontology stu�. I

realize that the only remotely constructive ideas I've had about it resemble
some old multiple-hash scheme I was told about back at Whizbang that I
can't �nd on the internet for its brutal simplicity.

2008.7.28
It seems mostly like transitivity is a big issue in voting-modulo for equal-

ity; is it the only major one? Can I get any insight from `local poset' topol-
ogy? It also violates global transitivity while preserving it locally. The
skeleton of a Moebius strip is kind of like a local equivalence relation that
locally has two equivalence classes.

2008.7.29

A possible story for why 4 is a connective (or at least is so as much
as ©, with some synchronous moves postponed as judgments) is that its
rules consist only of `free moves' on top of those licensed by focusing: not
exactly asynchronous decomposition, but sequences that eventually result
in at-least-as-strong sequents.

The example of such a move being dangerously darting into a strong
judgment on the right or a weak judgment on the left, in order to immedi-
ately (and asynchronously) get back out to safety.

2008.7.30
Debugging Twelf uni�cation. Questions:

• Where does pruning actually happen?

• At some point I will want to apply an inverse substitution and actually
fail if it attempts underscores at any point. Is this incompatible with
the usual system of delayed substitutions? It seems that I need to
really check if that variable is used in the type of any other evar.
How do I collect all evars if that's the case? Is this code already
implemented? I seem to recall Frank said it was in a separate body
of code that just did matching.

201

2008.7.31
Any collaborative system that conveniently allows the creation of tax-

onomies must as a special case allow it for a single person; and as an even
more special case for a single person over a brief period of time.

These taxonomies have competing requirements of `fuzziness' and `crisp-
ness'. This seems reminiscent of a very Suberian competition between
freedom and regulation. Also of competition in APIs and interfaces in
programming � a more general, more �exible thing is not strictly more
desirable.

2008.8.1
Platform games often have puzzles where there are a bunch of widgets

that act in some periodic way, and you have to dash through them to avoid
being hit by them. Is there any interest in a mechanism that does the
opposite? Where you need to hit enough of them to succeed? There is
some sense in which this question risks being meaningless; that the only
thing that matters is that each element is `in the right phase' and there's
no meaningful extrinsic notion of what counts as a `hit' or `miss'.

2008.8.2
I want to account for what I believe.
Setting it down as text and examining it seems like a fruitful thing to

do.
Why is this so speci�cally in this case? It is because it is generally.
It seems that mere beliefs are somehow promoted to knowledge by virtue

of their cumulativity.
This is why scienti�c thinking is fruitful.
What is meant by a belief anyhow? Some kind of abstraction of the

internal state of an agent living in the world. A piece of data of some kind.
It is correct inasmuch as it is a useful piece of data in the model, one

that produces good results. We can pull back any normative notions we
have about the world back to normative notions about beliefs.

An agent appears to be learning (in a good sense) if exposure to more
data about the world leads to better beliefs. Amazing how much normative
thinking is coded here!

2008.8.3
There is such a thing as `knowing english', at least to the extent that if

a hungry person is dropped in the middle of an american city with a pile
of money, one such will obtain food faster than others.

There is such a thing as `knowing how to build an airplane' (knowledge
that is spread across a group of people in a society) that can be distinguished

202

by whether airplanes actually get built or not, presuming a desire for such.
These are pretty much indisputable: knowledge, science are cumulative

at least to this extent. You can't simply be told to shift sideways into
a belief-state of knowing english, or being able to build airplanes. These
beliefs, these bits of data, are generally, as an approximation, additive with
other pieces of knowledge, but this may break down. Knowing english may
(or may not) interfere with other languages.

2008.8.4

A �nite sequence (vi)i∈I is a transaction over I if
∑

i∈I vi = 0. A
transaction is of cardinality n if |I| = n. It is a primitive transaction if it
is zero everywhere except for two coordinates i and j such that vi = −vj .

The notation [x]ij means the primitive transaction v where vi = −x and
vj = x.

Question For a given transaction of size n, what is the smallest number
of primitive transactions that sum to it?

A simple upper bound is n − 1. Suppose wlog that I = {1, . . . , n}.

Then take the sequence of primitive transactions wk =
[∑k

i=1 vi

]k+1

k
for

k ∈ {1, . . . , n− 1}.
If a transaction v over I is simple if it has no nontrivial subtransactions

in the evident sense � if it lacks any subset J ⊂ I such that
∑

j∈J vj = 0.
For simple transactions the upper bound mentioned above is tight. If the
graph induced by the primitive transactions used to recover v is not con-
nected, then it has connected components, each of which is a subtransac-
tion. So it must be connected � but we have to use at least n− 1 edges to
connect n vertices.

We can see therefore that any putative minimum can at least be re-
duced to a collection of minimum solutions for connected components of
the primitive transaction graph � any cycles can be easily broken.

The question reduces to

Question For a given transaction of size n, what is the maximum sub-
transaction cover?

2008.8.5
The above is easily seen to be NP-hard. Reduce from the knapsack

problem: if we have weights wi that sum to 2m, let there be |I| people that
owe wi and 2 people who are each owed m. If there is a subset of the wi

that add to exactly m, we can do it in |I| transactions, otherwise it takes
|I|+ 1.

203

2008.8.6
The thing that perplexes me with typographers' way of talking about

their obsession with whitespace and artists' way of talking about volumes
and outlines and forms and so on is that it overdetermines things.

The set of pixels that are black and the set that are white are both
determined by the underlying function R2 → bool � you can't choose one
without choosing (or in other cases, at least in�uencing) the other.

I suppose the reality they're talking about (or could be talking about) is
human error functions: if I focus on the whitespace, whatever that means,
then I might make a di�erent result.

2008.8.7
In particular, to draw a walking �gure, I must draw the whole �gure.

But a di�erent �gure results � empirically � if I start by placing the head
where I think it should go, or if I start by placing the feet where I think
they should go. This being because where I think other parts should go
afterwards is in�uenced by earlier decisions.

2008.8.8
If I were perfectly accurate in all these estimates, order wouldn't matter

� can this be taken as a de�nition of �delity/accuracy when there is no
objective exemplar of correctness to compare to?

2008.8.9
This reveals a hypocrisy in my thinking in the past. I've tried to argue

to myself that the only long-term solution to spam is whitelisting.
That is, I'm claiming that we will fail as long as we basically accept

every message but reject some, and that we might succeed by basically
rejecting every message but accept some.

However, in both cases, we have a function which selects which messages
are accepted. To be saying something interesting and nontrivial I must
constrain what this function looks like.

Likewise with accepting and rejecting programs with type systems. We
want to say that we should essentially start by rejecting all programs and
then accept some, but what should we say if we want to be clear?

Likewise naïve set theory, although here we seem to have a sharper
problem. For we can't consistently achieve comprehension of the universe
in order to make the argument that it's just some and just the same (exten-
sional) subset of the universe no matter how it's (intensionally) conceived.
Constructing sets from axioms seems to be the only method that works.

Does the `adjoint' perspective on modalities help any with reasoning

204

about classical modal logic's equivalence to intuitionistic logic? With un-
derstanding why it's di�cult to come up with a labelled sequent calculus
for Pfenning-Davies box?

How could something like Twelf be more `self-eating'?

Turns out the last step of the reduction of the little transaction toy
problem above is totally standard; subset sum, even when the target sum
is zero, is classically NP-complete. Demanding a strict subset only causes
a linear blow-up.

Added expandSub to unify.fun, and got rid of a case where Undef ap-
pearing in invertSub causes a NotInvertible exception. Less sure the latter
is correct. Also feeling sketchy that there seems to be another expand-as-
necessary feature in invertSub in addition to expandSub, which operates
on a di�erent context size.

It does look like I can `explain' a labelled sequent calculus for Pfenning-
Davies box.

There are two translations, A+
p and A−p . Both take as input proposi-

tions over the modal propositional langage. They output propositions in
a language with a truth judgment and an index set of lax judgments all
beneath it. A+

p yields a proposition suitable for the laxp judgment, and A−p
yields an ordinary proposition. We write truth connectives as ⇒,∨,∧, etc
and laxp connectives as (p,⊕p,&p, etc. The adjoints Up and Fp mediate
between them.

We can also include an @ connective.
The translations are

X X−
p X+

p

a Upa a
A⇒ B UpA

+
p ⇒ UpFpB

−
p FpA

−
p (B+

p

A ∨B UpFp(A−p ∨B−p) FpUpA
+
p ⊕ FpUpB

+
p

A ∧B UpFp(A−p ∧B−p) FpUpA
+
p ⊗ FpUpB

+
p

�A UpFp∀α.A−α Fp∀α.UαA
+
α

A@q UpFpA
−
q FpUqA

+
q

We can prove that the two translations are essentially similar up to
provability

UpA
+
p a` A−p

205

but although the negative translation can up to provability be de�ned in
terms of the positive, it is convenient in the form it's in for connecting it
to the labelled Pfenning-Davies system.

A sequent A1[p1], . . . , An[pn] ` C[q] gets translated to

(A1)−p1
t, . . . , (An)−pn

t ` C+
q laxq

In reasoning about the translation we must sequence the implication
with the second Up in UpA

+
p ⇒ UpFpB

−
p , and the Fps with ⊕ in FpUpA

+
p ⊕

FpUpB
+
p and similarly with ⊗.

* * * * * *
In the negative translation of �, we could also do

UpFp∀α.UαFαA
−
α

which changes the interpretation of A[∗] to mean that we can instantiate
A[∗] at A[q] only if q is already on the right. The reason why it doesn't
matter whether this restriction is in or not is the fact that UαFαA

−
α and

A−α are equivalent.

* * * * * *
Diamond also works:

X X−
p X+

p

�A UpFp∀α.UαFαA
−
α Fp∀α.UαA

+
α

3A (∀α.(A−α ⇒ Uαbα))⇒ Upbp Fp(∀α.(UαA
+
α ⇒ Uαbα))(bp

where b is an indexed linear negative atom.

2008.8.10
I think cut elimination can be proved directly for the above system if

one takes care to think of left-principal derivations separately.
Something like Γ;A ` C[p] meaning essentially Γ, A[p] ` C[p] and that

A was most recently decomposed. Have a rule

Γ;A ` C[p]

Γ, A[p] ` C[p]

and put left rules at it, e.g.

Γ, A[p], B[p] ` C[p]

Γ;A ∧B ` C[p]

206

The cut principles are then something like

Γ ` A[p] Γ, A[p] ` C[r]

Γ ` C[r]

Γ ` A[p] Γ;A ` C[p]

Γ ` C[p]

2008.8.11
Frank seemed to think that Deepak's system already has left-rule judg-

ment constraints?
Goals for this coming week: reread carsten's thesis again. Work on

implementation. Ideally have uni�cation working, type reconstruction kind
of working.

2008.8.12
I think I can curry away additives � this is a surprising fact that de-

pends on having HLF around.
Probably generalizing monotonicity to that and n-ary arrow would ac-

tually be fairly �exible.

I can imagine a sci-� story that operates on the premise that brain-
states can be observed and interpreted fairly accurately, and the discovery
is made that dreams are actually less narrative than we think, that they
are only random jumblings of thoughts and symbols, and any narrative
we �remember� in the morning is merely that, a epiphenomenal memory-
experience that does not terribly accurately represent even the internal
history of our own brains during the course of the night.

A new sport for the OCD set: tile-walking. Essentially a form of dance,
participants are judged on the aesthetics of how their walk appears relative
to a square grid.

Actually this suggests a more `spatial' DDR where step directions are
integrated, possibly with momentum.

MLML?

So Deepak tells me that his `K says A' is basically �K(K ⇒ A). This
makes a lot of sense. It's remarkable how close my attempt at representing

the K in Γ K−→A as a linear token came without being correct. Deepak

207

(or more to the point, the correct approach) is instead using modal erasure
to enforce the uniqueness of the K rather than linearity, which leads to a
subtle di�erence in how the operation behaves on the left and right. This
explains why when using linearity I seemed caught between kind of wanting
K ((K ⊗A) on one side and K ⊗ (K (A) on the other.

2008.8.13
Ran tests on directory cut-elim. Fixed a few missing cases for under-

score.

2008.8.14
Other tests:
Test New Unif Old Unif
alloc-sem Freezing violation ′′
arith Ok ′′
ccc Ok ′′
church-rosser Ok ′′
compile/cls Ok ′′
compile/cpm Ok ′′
compile/cps Ok ′′
compile/cxm Ok ′′
compile/debruijn Ok ′′
compile/debruijn1 Ok ′′
cpsocc Ok ′′
cut-elim Already Ok ′′
fj Ok ′′
fol Ok ′′
guide Ok ′′
handbook Ok ′′
incll Ok ′′
js4 Ok ′′
kolm Double-checking failed? Ok
lp-horn Ok ′′
lp Freezing error ′′
mini-ml Ok ′′
modal Missing sources.cfg ′′
polylam Ok ′′
prop-calc Ok ′′
small-step Missing sources.cfg ′′
tabled Didn't do ′′
tapl-ch13 Ok ′′

208

2008.8.15
So the kolm bug is real. It is in the midst of some code that actually

runs the theorem prover. I wrote some code to copy the ref cells in a
uni�caion problem and ran old uni�cation and new in parallel to test for
discrepancies.

2008.8.16
Testing for discrepancies failed very mysteriously. Trying to make a

minimal counterexample instead:

i : type.
o : type.
forall : (i -> o) -> o.
kolm : o -> type.
kolm_forall : kolm (forall A)

<- ({a:i} kolm (A a)).
%theorem exkolm : forallG (pi {a:i})

forall {A:o} exists {K:kolm A} true.
%prove 3 A (exkolm A K).

2008.8.17
So the proof that proof irrelevance is equivalent to two monads is rela-

tively easy after all.
Let �∗ be the transformation that rewrites 4 to ©©′.

Lemma 0.40

• If Γ∗,©′Γ′ ` A∗, then Γ, (Γ′)÷ ` A.

• If Γ∗,©′Γ′ ` ©′A J , then Γ, (Γ′)÷ ` 4A (for J ∈ {lax, t})

• If Γ∗,©′Γ′ ` A∗ lax′, then Γ, (Γ′)÷ ` A÷.

Proof Analyze the derivation in the bimonadic logic. Right rules are gen-
erally easy, and proceed down the list of judgments when they actually
involve the monads. Nonmonadic left rules are easy except in the last case,
where we must prove lemmas like

Lemma 0.41 If Γ, A ` C÷ and Γ, B ` C÷, then Γ, A ∨B ` C÷.

which are nonetheless rather easy. The monadic left rules only come up in
two places, and are translated to triangle and irrelevance left rules.

209

2008.8.18
To do a labelled presentation of a modal system with x < y < z, I need

a `lexicographically ordered' set of labels, xij < yi < z. The stronger box
conjures up new i and j, whereas the weaker box just comes up with new
i.

Ordinarily every connective dips down from the top all the way to the
bottom; so ordinary truth requires both labels to match up on the right.

Possibly something like the following works:

X X−
pq X+

pq

�1A UpqF
pq∀αβ.UαβF

αβA−αβ F pq∀αβ.UαβA
+
αβ

�A UpqF
pqUpF

p∀α.UpαF
pαA−pα F pq

p ∀α.Up
pαA

+
pα

2008.8.19
No, maybe the following:

X X−
pq X+

pq

�1A UpqF
pq∀αβ.UαβF

αβA−αβ F pq∀αβ.UαβA
+
αβ

�A UpqF
pq∀α.UpαF

pαA−pα F pq∀α.UpαA
+
pα

Synchronous sequencing the ∀α and the Upα makes the weaker validity
actually weaker � it only works if the world begins with p.

The point is that � scrambles all labels below some point, or perhaps
more to the point, those `not above' � I probably can still think of the
multi-labels as tuples rather than paths. The poset is embedded into the
subset order on the powerset of the original graph.

I think if I'm thinking about the round-trip inherent in box, the preorder
structure collapses and all I can really tell apart is a poset.

For S ⊆ X I get something like

(�SA)−x:X = UxF
x∀s:S.Ux+sF

x+sA−x+s

(�SA)+x:X = F x∀s:S.Ux+sA
+
x+s

This seems to only require one �at domain of lax truth judgments below
regular truth! How strange.

2008.8.19
I should maybe try to trace every essentially stateful thing inside of

uni�cation � put printfs at the evar instantiations and constraint creations,
for instance.

210

2008.8.20
In sml, I always forget the `type' in `where type' and consequently get

weird error messages. Another thing to remember is that earlier functor
arguments are indeed in scope.

2008.8.21
Laura Marsh asked me a question about work shift scheduling that is

(almost certainly) a lovely example of classic NP-complete problems show-
ing up in real life.

2008.8.22
Have been going through and uncurrying the additives by hand. The

additive conjunction left rule comes out as

andL : (hyp (A and B) -o conc C)
o- ({a : w}{b : here}

hyp A @ a
-> hyp B @ a
-> conc C @ a * b).

which funnily enough has a zero-ary analogue

topL : (hyp top -o conc C)
o- ({a : w}{b : here} conc C @ a * b).

which is de�nable as

topL : (hyp top -o conc C)
o- ({a : w}{b : here} conc C @ a * b)

= [x] [y] x.

Oh, wait, yikes, that's not the andL I meant! The standard one would
be

andL1 : (hyp (A and B) -o conc C)
o- (hyp A -o conc C).

andL2 : (hyp (A and B) -o conc C)
o- (hyp B -o conc C).

I wonder if the former also `works', though, and if so, in what sense?

2008.8.23
I can't work out how I was inferring the existence of world-underscores

before. The capital lambdas make sense, but not the omitted applications.

211

2008.8.24
Trying an alternate tack, reifying them instead � it seems to motivate

doing uni�cation with underscores, since then I can solve

u[] = v[x.x]

by projecting out both arguments of v.

2008.8.25
The more pertinent non-pattern problem is

u[] = v[x.k]

because I'm using an arbitrary constant to represent world application.
This I don't really know how to deal with. Surprisingly, changing the

de�nition of pattern to allow speci�cally ˆ doesn't seem to work. Maybe
�ddling with subordination would?

2008.8.26
Some uni�cation transformations for ACU.

v[D] = ᾱ ∗ ū[D̄]

7→ v ← ᾱ ∗ ū′[D̄
∣∣
D

]

ui ← u′i[Di

∣∣
D

]

(if ∀j.αj ∈ D)

α ∗ β̄ ∗ ū[D̄] = α ∗ γ̄ ∗ v̄[D̄] 7→ β̄ ∗ ū[D̄] = γ̄ ∗ v̄[D̄]

α ∗ β̄ ∗ ū[D̄] = w[D] ∗ γ̄ ∗ v̄[D̄]

7→ β̄ ∗ ū[D̄] = w′[D] ∗ γ̄ ∗ v̄[D̄]

w[D]← α ∗ w′[D]

(if α 6∈ γ̄, v[D̄] and α ∈ D)

2008.8.27
Actually, if all I care about is MGU solvability, why don't I just solve

constraints over Q instead of N?

Subordination doesn't work to get rid of spurious world constraints.
I really think something more along the lines of modifying the notion of
patterns is right.

212

2008.8.28

Frank suggested that u[v[α]] = α 7→ u ← 1 ∧ v ← 1 should be general-
ized. I tend to like

γ̄ ∗ u[p] = α ∗ β̄ 7→ u← 1 ∧ γ̄ ∗ p = α ∗ β̄

if α 6∈ β̄, γ̄.
2008.8.29

Consider the possibility that `truth' is de�ned by the structure of a given
proposition or predicate, not any overriding notion of truth � that there
might be nothing signi�cant in common between �this is red� and �I like
this�, only that the predicates of redness and preference are satis�ed.

2008.8.30
Suprisingly and upsettingly, reconstruction of the principal cut case for

(seems to return a constraint of the form a ∗ b = c ∗ d.
2008.8.31

Oops! That constraint came from having written the case incorrectly
and naming some variables di�erently that ought to have been the same.

The correct transform is not

u[v[n]] = n 7→ u← 1

but rather

u[v[n]] = n 7→ u← 1 ∗ w[]

because the latter preserves open instantiations.

2008.9.1
Consider what to do with

u1[σ1] · · ·um[σM] = n ∗X

when n only occurs in, say, σj among the σ and does not occur in X.
Take speci�cally

u[1] ∗ v[] = 1 ∗ h[]
I'm tempted to transform u ← 1, but that's not correct for the same

reason as the previous problem. I really want to make up a new evar j and
say that u← 1 ∗ j[].
2008.9.2

Here's my current smallest counterexample to lincut.elf working:

213

%hlf.

o : type. %name o A.
and : o -> o -> o. %infix right 11 and.
conc : o -> type.
hyp : o -> type.
andl1 : (hyp (A and B) -o conc C)

o- (hyp A -o conc C).

ca : {a : w} {b : w} {A : o}
conc A @ a
-> (hyp A -o conc C) @ b
-> conc C @ a * b
-> type.

car_andl1: {A:o} {B1:o} {A1:o} {D:conc A}
{E1’: hyp B1 -o conc A1} {A2:o}
{H:hyp (B1 and A2)}
{E1: hyp A -o hyp B1 -o conc A1}

ca ^ ^ A D
([h:^(hyp A)] andl1 ^ (E1 ^ h) ^ H)
(andl1 ^ E1’ ^ H).

The constraints generated by car andl1 are easily seen to be unsolvable,
so either there is a problem with the twelf code as written, or with my
constraint generation code.

2008.9.3
This reduces to

%hlf.
o : type.
n : (o -o o) -o o.
p : {b : w} (o -o o) @ b -> type.
c: {E: o -o o -o o} p ^ ([h:^ o] n ^ ([x :^ o] E ^ h ^ x)).

2008.9.4
Ah, the cause of the bug is the same old issue I always forget about when

doing dependent types, that I must shift the types of looked-up variables
when pulling them out for synthesis.

2008.9.5
There were some other bugs with zero-ary lollipop being too eager and

other miscellaneous debruijn problems.

214

2008.9.6
Got most bugs �xed now, I think, and coded up the disequality of

lambda terms.

2008.9.7
This example does fail during abstraction:

o : type.
c : ((o -o o) -o o) -> type.
k : c A.

Apparently there are some contextual variables left over. Too bad! I
lack a clear picture still of what the example looks like when run having
turned debugging o�. Should get around to that soon.

2008.9.8
SVG cursors are kind of messed up in Chrome, especially hotpsots.

Safari does them correctly apparently, but slows down more signi�cantly if
it has to draw a lot.

I probably have a minor bug when naming worlds.
The following works:

%hlf.

tm : type.
name : type.

lam : (name -0 tm) -> tm.
var : name -0 tm.
app : tm -> tm -> tm.

#’ : name -0 name -0 type.
= [a] [b] #’ ^ a ^ b.
%infix none 5 #.

subst : tm -> name -0 tm -> tm -> type.
subst/app : {a:w}

subst E ^ N (app M1 M2) (app M1’ M2’) @ a
<- subst E ^ N M1 M1’ @ a
<- subst E ^ N M2 M2’ @ a.

subst/lam : subst E ^ N (lam M) (lam M’)

215

o- ({n :^ name} subst E ^ N (M ^ n) (M’ ^ n)).

subst/var/this : subst E ^ N (var ^ N) E.
subst/var/that : subst E ^ N (var ^ N’) (var ^ N’)
<- N # N’.

but in subst/app for instance the implicit world gets named E.

I wonder what would happen in the pi-calculus, when one wants to use
linearity for two di�erent things? Might be okay still.

2008.9.9
Interesting pattern when trying to do type inference on an unη-expanded

variable checked against (· · · (o(o) · · ·(o) at various orders.
The code to generate the uni�cation problem and type for 4th order for

example is

o : type.
c : (((o -o o) -o o) -o o) -> type.
d : c A.

and

o : type.
c : (((o -o o) -o o) -o o) -> type.
d : {(((o -o o) -o o) -o o)} c A.

The results up to 7th order are:

2nd

===

((all.(1 -> 1)) -> e)

((all.(1 -> 1)) -> e)

3rd

===

((all.((all.(B[1.2] -> 2 * B[1.2])) -> 1)) -> e)

((all.((all.(1 -> 1 * 2)) -> 1)) -> e)

Solution:

B <- 1

4th

===

((all.((all.((all.(1 -> 1 * H[2.3])) -> 2 * H[1.2])) -> 1)) -> e)

((all.((all.((all.(1 -> 1 * 2)) -> 1 * 2)) -> 1)) -> e)

Solution:

H <- 1

5th

===

((all.((all.((all.((all.(B[1.2.3.4] -> C[1.2.3.4])) -> 1 * J[2.3])) -> 2 * J[1.2] * K[1.2])) -> 1)) -> e)

((all.((all.((all.((all.(1 -> 1 * 2)) -> 1 * 2)) -> 1 * 2)) -> 1)) -> e)

Solution:

J <- 1

K <- e

B <- 1

C <- 1 * 2

6th

216

===

((all.((all.((all.((all.((all.(1 -> 1 * M[2.3.4.5])) -> D[1.2.3.4])) -> 1 * L[2.3])) -> 2 * L[1.2] * O[1.2])) -> 1)) -> e)

((all.((all.((all.((all.((all.(1 -> 1 * 2)) -> 1 * 2)) -> 1 * 2)) -> 1 * 2)) -> 1)) -> e)

Solution:

M <- 1

D <- 1 * 2

L <- 1

O <- e

7th

===

((all.((all.((all.((all.((all.((all.(B[1.2.3.4.5.6] -> C[1.2.3.4.5.6])) -> 1 * O[2.3.4.5])) -> E[1.2.3.4])) -> 1 *

N[2.3])) -> 2 * N[1.2] * P[1.2])) -> 1)) -> e)

((all.((all.((all.((all.((all.((all.(1 -> 1 * 2)) -> 1 * 2)) -> 1 * 2)) -> 1 * 2)) -> 1 * 2)) -> 1)) -> e)

Solution:

B <- 1

C <- 1 * 2

O <- 1

E <- 1 * 2

N <- 1

P <- e

The solutions are computed by hand.

New bug?

o : type.
c : ({a:w}{b:w} o @ a -> o @ b) -> type.
d : {a1:w}{a2:w} {X : {a3:w}{a4:w} o @ a1 -> o @ a2} c X.

Whoops! No, I had just turned o� the debugging code that reported
failure. I should deal with that better. Also the following (correctly) fails,
contrary to discussion in the entry from 2007.9.21 above:

o : type.

c : ({a:w}{b:w} o @ a -> o @ a -> o @ b)
-> ({a:w}{b:w} o @ a -> o @ b -> o @ b)
-> type.

d : c X X.

A building that is explicitly linear, in which one must walk a space-�lling
curve. Which may have the occasional room. Which gets narrower as you
approach the exit. The choiceless species of labyrinth. Each participant is
given a permanent marker, red, green, or blue. Every surface of the space
is white, invites marking � except that it is prepared with gra�ti, hostile
to, or agressively supportive of, �the reds�, �the greens�, �the blues�.

And the ceiling gets lower as you go on, too, and incidental objects in
the room become smaller.

217

2008.9.10
I almost saw last night what Noam was getting at when he was trying to

explain his funny context business � that some theorems might get shorter
if you had the ability to see variable occurence in more than one way, that

Γ′ = Γ(A) =⇒ Γ′ ` B

Γ ` A→ B

could be an admissible rule (and the ordinary rule admissible wrt it) for
which, say, weakening might be easier to show without having to actually
induct any farther.

Everything in the type inference results from yesterday makes sense
until one gets to 5th order. For 3rd order, I see that X must have type
∀α.(∀β.u[αβ]→ α ∗ u[αβ])→ α
but see that this is equivalent to
∀α.(∀β.β → α ∗ β)→ α
because the β, being quanti�ed at a negative position, can be instan-

tiated so freely that it doesn't matter that there is an unknown u : w →
w→ w there.

I would like to be able to write a large program with many features
that are e�ectively independently controlled by #ifdefs, but be able to tell
nonetheless some static properties of the program (at a minimum syntactic
correctness) under any of the 2n possible `con�gurations', and especially to
derive source-language versions of the program without those features.

I think of this as especially useful when facing a big complicated program
that could be simpler and better understood if only many useful features
were removed; I don't want to ultimately use the simple version, but I'd
like to see what it is and then compare it to the more complicated version.

In all likelihood looking at the development version history of a project
would be a good approximation, but you would lose out on bug�xes and
signi�cant reorganiztion by looking only at early versions.

Fontforge compiles under cygwin with

./configure --without-python --disable-pyextension
--without-freetype-src

218

2008.9.11
Read some of a Dexter Kozen paper on stochastic processes and coin-

duction. Didn't really grasp it.

2008.9.12
Went to Susmit's thesis defense. Very strange; he seemed to evade

questions when it wasn't necessary.

2008.9.13
I think gaming is the right medium for expressing ideas about, e.g.,

societal engineering � the message is `Here! Here is this dispassionate,
detached simulation. Here are my assumptions (question them if you want)
and here are the things you can modify and and here is the result.'

2008.9.14
The thing we expect to do with patterns for pair types actually falls out

somewhat naturally from the pattern restriction on functions after uncur-
rying them; the notion disjoint projections of the same variable amounts to
disjoint sets of variables after partial projections are η-expanded.

2008.9.15
A useful way to �nd out what resources a �ash �le is getting program-

matically from some directory (even if decompiling fails) is to just point it
to one's own server and look at the access logs.

`ChucK' is a decent, if not spectacular, imperative music programming
environment.

2008.9.16
Is it really all that useful to have disequality for store names? It might

make certain predicates easier to de�ne, like the `pattern-ness' of the store
as a whole. For that I wouldn't even need sharp as a separate relation, just
linearity itself. That would be rather nice to de�ne, in fact.

I feel about mathematicians who say `but we must have AC! we need
it for the following important and useful results' much the same way as
I do about religious people who say `but we must have faith in God! for
otherwise how would our souls enter Heaven?'

2008.9.17
Aha! At least I �gured out why I was getting double-checking without

enabling it.

Index: inference.fun

219

===

--- inference.fun (revision 1314)

+++ inference.fun (working copy)

@@ -154,7 +154,7 @@

val ((Gnew, Bnew), sc) = expand’ ((G, B), (G, B), 0)

val _ = if (!Global.doubleCheck) then TypeCheck.typeCheckCtx (Gnew) else ()

val ((G’, B’), w’) = sc ((Gnew, Bnew), I.id)

- val _ = TypeCheck.typeCheckCtx G’

+ val _ = if (!Global.doubleCheck) then TypeCheck.typeCheckCtx G’ else ()

val S’ = S.State (n, (G’, B’), (IH, OH), d, S.orderSub (O, w’),

map (fn (i, F’) => (i, F.forSub (F’, w’))) H, F.forSub (F, w’))

2008.9.18
Unfortunately I still cannot �nd the point of divergence of my code from

the original. Perhaps it is due to the eta-expansion of substitutions after
all? I have not checked whether the explicit eta-expansion is at fault � it
may be happening elsewhere `implicitly' in lazy expansion of certain case
analyses.

It doesn't seem to be due to exceptional returns � that was tom's
suggestion, and I was really hoping it was the reason.

2008.9.19
Least-squares �t to required gradient amounts to equality in Laplace

space! Awfully cute, that.

2008.9.20
To get properly centered slides I need to run dvips like this:

dvips -T 11in,8.5in slides

WMM talks:

Formalizing an Extensional Semantics for Units of Measure Andrew
Kennedy

Invariance under scaling the important issue.
Kind of like representation independence in polymorphism and free the-

orems.
Use logical relations similarly to prove results.

g : ∀u.num u→ num (u2)

∀x.g(kx) = k2(gx)

bar : ∀α.α× α

∀x.bar(f(x)) = 〈f, f〉(bar(x))

220

I feel slightly confused that `nice ex post facto results' are con�ated with
the de�nition of `not going wrong'.

They said you can't do square root u2 → u without a square root
primitive � but certainly you can write newton's method u2 → u → u
given an initial guess since g := (t+ g2)/2g is still well-united. Is there any
way of thinking about how this algorithm is invariant under scaling, up to
approximation?

Is there anything to say about Tarantola's ideas about invariance up to
choice of, e.g., m vs. m−1?

Proving correctness of a dynamic atomicity analysis in Coq
Caitlin Sadowski, Jaeheon Yi, Kenneth Knowles, and Cormac Flanagan

Di�erence between atomic and synchronize in Java?
Bizarre statement that the easy cases didn't compress well?

Mechanizing the Metatheory of a Language With Linear Resources and
Context E�ects
Daniel K. Lee, Derek Dreyer, and Andreas Rossberg

`One of Derek's crazy languages'
Predicate for `linearity' (not sure if I believe it really is such), explicit

contexts.
Actually, hell, this funny notion of linearity looks like exactly the same

damn thing as the names. At the binding site of α, create a linear variable.
At de�nition of α, consume it. At other mentions of it, `useless' it.

It's not quite the same, for you're only supposed to use α after it's
de�ned, right? Very close, though. Maybe at that moment you consume
it and rebind an unrestricted variable? That wouldn't require any zero-ary
business would it? Then why aren't new and def the same?

Oh! Talked to dklee, turns out you are allowed to mention αs early, so
the encoding I have in mind is probably exactly right.

Case Study: Subject Reduction for Mini-ML with References, in Is-
abelle/HOL + Hybrid
Alan J. Martin

Taking Cervesato and Pfenning '96 and doing it in Isabelle/HOL. Hy-
brid is a thing Alberto worked on to carve out the `syntaxy' part of the full
non-HOAS function space.

Something about a `two-level' approach? What advantage do we get
from such intense indirection? Do we have e�ective loss of con�dence in
adequacy?

221

Mechanizing Methatheory with Nested Datatypes
Andre Hirschowitz and Marco Maggesi

Oh so `nested datatypes' seems to be that thing that kaustuv told me
about long ago where you talk about α terms where α is the type of vari-
ables: the constructor var would have type α→ α term.

A synonym for `nested' seems to be `nonregular'.
Bird and Meertens '98 looks like the canonical paper. They make

an analogy between regular type de�nitions and tail-recursive functions.
Nested datatypes are just the more general case where appeals to the re-
cursively bound variable are not necessarily tail-recursive.

An environment is a coalgebra for ty? (ty being of course the polymor-
phic datatype that is like term above, but he's talking about type expres-
sions with variables) The same as the type of the var constructor. tymap is
a coalgebra map?

Adam Chlipala asked why he didn't just use deBruijn indices with a
dependent type discipline � the speaker responded with something about
algebras over a monad, but I think the crux is that the nested datatype
approach amounts to shoehorning the type of naturals into the type lan-
guage, which makes some later expressions shorter, for lack of a need to
make that translation explicit.

Shallow embedding of a logic in Coq
Jerome Vouillon

Didn't really understand this one.

SASyLF: An Educational Proof Assistant for Language Theory
Jonathan Aldrich, Robert J. Simmons, and Key Shin

User-friendly second-order front-end to some of Twelf's metatheorem
checking facilities.

Building Veri�ed Language Tools in Operational Type Theory Aaron
Stump

Optimized LF type-checking � incrementally parse and typecheck, and
avoid building ASTs for terms that are going to be garbage eventually
anyway. Is typechecking really a bottleneck, though?

I'm naturally suspicious of so much naming...
�Tackling the Awkward Squad� nice old paper by Peyton-Jones et al.
Twelf raises exception on one of Stump's example suite? And timing

out on others?

222

God damn the subjectivity of the size or import of the trusted code base
drives me crazy still.

5-minute talks
Forgot his name: `House' operating system mentioned. Something

about separation logic and coinduction for reasoning about schedulers.
Andrew Kennedy: .NET subtyping subtle, should formalize it.
Stephanie Weirich: �On why twelf is better than Coq�. She backs

o� to a more LISPy datastructure and carves out a re�nement so that
substitution is shorter to de�ne.

http://www.cis.upenn.edu/~baydemir/abstracting-syntax/
Adam Chlipala says: if you had enough automatic code generation,

wouldn't that be enough? Stephanie says: maybe with type classes?
Adam Chlipala’s own talk: sounds like Meta-Tarskian circularity, just

within the world of Coq.
I'm kind of sick of the bullshit religious wars between Coq and Twelf in

particular.
Karl Crary promoting the Penn paper �Engineering Formal Metathe-

ory�. He makes the point that we need variables to α-vary not only in
terms in the object language, but in the derivation. I'm kind of worried his
pedagogical suggestion means a return to that awful vertical `dot dot dot'
notation for natural deduction.

The thing that bothers me about the conceptual primacy of variables
that are amenable to (ordinary) substitution is that ordinary substitution is
just one thing we like to do to bound things (and weakening and contraction
are just some old properties that we sometimes like to hold of them) and
not the only one. Hereditary substitution being another, obviously, and
how are we to internalize that?

2008.9.21
From 2007.10.17, the idea that nature has an interest rate.
In point of fact, it has many; various investments may have di�erent

rates of return.
Consider the ethical objection to usury: that a rich person is being

exploitative by lending money to a poor person at interest. But if they
are not allowed to charge interest, they would prefer to buy equipment
that would yield such an interest rate. So either we coerce the rich to o�er
interest-free loans, or we su�er with people not being able to a�ord houses.
Possibly, however, we might prefer �external� investment because then more
of `nature' is being exploited?

223

2008.9.22
Lazy and Speculative Execution

Butler Lampson
Laziness is not computing (yet) something the programmer told you to

compute, but which you bet won't be needed.
Speculativity is computing something the programmer didn't tell you

to compute (yet), but which you bet will be needed.
They appear tantalizingly dual.
Kind of like put and call options for computation?
Something about `escrow locking'.
The locking in concurrent version control is, looked at correctly, a kind of

speculativity or laziness, being optimistic that maybe nobody will interfere
with your �le you checked out.

2008.9.23
Defunctionalized Interpreters for Programming Languages

Olivier Danvy
Consider the Scott-Tarski interpreter that implements the lambda cal-

culus in terms of... the lambda calculus. If the `host' language is CBN then
the interpreter is, and respectively CBV. So the content of CBV and CBN
is in the respective CPS transforms.

2008.9.24
Polymorphism and Page Tables�Systems Programming From a Func-

tional Programmer's Perspective
Mark Jones

He emphasizes separation of processes � this is well and good, but
experience using Chrome for instance shows me that this isn't enough.
What I also want are minimum-resource-guarantees to each process. For
using up all the damn CPU (or RAM, or disk) is after all a way for processes
to interfere with one another.

What are the obstacles to compiling FP programs to a target language
without GC?

2008.9.25
Still trying to work through the idea that came up during dinner the

�rst day of ICFP proper about pattern comatches. Resembles bunched
logic with a distributivity property.

Went to a talk by Larry Lessig. Inspiring but not convincing.

2008.9.26
Realization: conformal maps are locally orthogonal, a strengthening of

how di�erential maps are locally linear. Conformal maps do not necessarily

224

preserve dot product, just dot product divided by lengths.

2008.9.27
What is the mixture of hard and easy problems in the following setup:

each agent has a collection of goods, and advertises which transactions they
feel desirable (in the form: �I receive X, Y, Z and give W, V, U�)

Consider the essential things in this model that make it realistic. The
(typical) composability of desirable trades, the properties of physical ob-
jects like non-copyability and (default) indestructibility.

Consider the role the law plays in constructing ownership. It is not
that we have an intrinsic, canonically de�ned right to property � I can't
imagine how the precise boundaries of that right would be inferrable from
�rst principles.

Ownership falls out of the highly contingent rules of the game that gov-
ernment guarantees.

In a sense there are `natural' rules about how it is easier to control things
that are physically near to you, that you have in a locked warehouse, etc.

But the institution of governments says: let us live in a �ctive world
where theft is impossible, where it is not an allowable move in the game.
If you break the magic circle of the game by going outside its rules, then
it is empirically likely you will be punished. What is mysterious is the
rationalization of the enforcers; they live on the boundary of the magic
circle, or perhaps in a slightly enlarged one, where the meta-rule is, `if you
break the (non-meta-)rule, you must be punished'.

I remember the distinction between Platonic and Pragmatic rules from a
discussion in (perhaps it was) Agora Nomic. Platonic rules say: `thou shalt
not'. Pragmatic rules say: `if thou doest, then thus'. But the trouble is, all
laws are ultimately pragmatic, or at least have a pragmatic re-reading. The
stability of the system relies critically on mutual enforcement or complicity
of all agents in the belief in the rule of law, and of one particular legal
inheritance.

2008.9.28
Oh, inserting the stu� that %hlf does messes up line numbering.
Naming is also still fucked up. Can't remember exactly what my con-

jecture about that was.
Any thoughts I had about checking coverage in LF and transferring

don't seem too plausible right now. Staring at the two commutative cases
for the right rule of tensor in the second derivation, I feel in my guts the
need for reasoning from labels to higher-order apartness.

I recall that it was higher-order worlds that I thought could conceivably
be used to uniformize the fact that a linear variable could go either way.

225

2008.9.29
Tried to do the cps translation in HLF. Seems it chokes on application?

%hlf.

e : type.
v : type.
app : e -> e -> e.
lam : (v -> e) -> v.
inj : v -> e.

ce : type.
cv : type.
co : type.
capp : cv -> cv -> co -o ce.
cth : co -o cv -> ce.
cfn : (cv -> co -o ce) -> cv.
clam : (cv -> ce) -> co.

cps : v -> cv -> type.
cpse : e -> (co -o ce) -> type.

cps/lam : cps (lam E) (cfn E’)
<- ({x:v}{x’:cv} cps x x’ -> cpse (E x) (E’ x’)).

cpse/app : cpse (app E1 E2)
([c :^ co] E1’ ^
(clam [w1] E2’ ^
(clam [w2] capp w1 w2 ^ c)))

<- cpse E1 E1’
<- cpse E2 E2’.

cpse/inj : cpse (inj E) ([c :^ co] cth ^ c E’)
<- cps E E’.

2008.9.30
My mistake was forgetting linearity in clam : (cv -> ce) -o co.
Remarkable how the linear continuation arguments in here are exactly

the same as monadic conclusions.

2008.10.1
Funny counterexample; yields an attempt to generalize over higher-order

worlds in the last declaration when I wouldn't suspect it would want to.

%hlf.

226

tm : type.
name : type.

lam : (name -0 tm) -> tm.
var : name -0 tm.
app : tm -> tm -> tm.

diseq : tm -> tm -> type.

#’ : name -0 name -0 type.
%abbrev # = [a] [b] #’ ^ a ^ b.
%infix none 5 #.

diseq/var/var : {a:w} A # B -o diseq (var ^ A) (var ^ B) @ a.

diseq-sym : {a:w} diseq E2 E1 @ a -> diseq E1 E2 @ a -> type.
apart-sym : {a:w} (N1 # N2) @ a -> (N2 # N1) @ a -> type.

diseq-sym/var/var :
diseq-sym ^ (diseq/var/var ^ ^ APART)

(diseq/var/var ^ ^ APART’)
<- apart-sym ^ APART APART’.

This reduces to

%hlf.
o : type.
: o -0 type.
ax : (# ^ B) -> o.
r : {a:w} o @ a -> type.
c : r ^ (ax N).

which I can repair by doing

%hlf.
o : type.
: o -0 type.
ax : {a:w} {B: o @ a} (# ^ B) -> o.
r : {a:w} o @ a -> type.
c : r ^ (ax ^ B N).

The original one seems to work by explicitizing apart-sym like so:

227

%hlf.

tm : type.
name : type.

lam : (name -0 tm) -> tm.
var : name -0 tm.
app : tm -> tm -> tm.

diseq : tm -> tm -> type.

#’ : name -0 name -0 type.
%abbrev # = [a] [b] #’ ^ a ^ b.
%infix none 5 #.

diseq/var/var : {a:w}
% {aA : w} {A : name @ aA} {aB : w} {B : name @ aB}
A # B -o diseq (var ^ A) (var ^ B) @ a.

diseq-sym : {a:w} diseq E2 E1 @ a -> diseq E1 E2 @ a -> type.
apart-sym : {a:w} {aA : w} {A : name @ aA}

{aB : w} {B : name @ aB}
(A # B) @ a -> (B # A) @ a -> type.

diseq-sym/var/var :
diseq-sym ^ (diseq/var/var ^ ^ APART)

(diseq/var/var ^ ^ APART’)
<- apart-sym ^ ^ N1 ^ N2 APART APART’.

With no help apparently o�ered by the commented-out explicitization of
diseq/var/var, which I had thought was the analogue of ax in the reduced
version. Mysterious.

Really ought to implement the 0-ary pi.

2008.10.2
If one bets on linear combinations of securities, the `spread' in joint

probability space seems like it ought to be a convex subset of it.

2008.10.3
I should be able to do uni�cation more explicitly with substructural

names, shouldn't I?

2008.10.4
Still can't �gure out call-by-name CPS.

228

2008.10.5
Here's a typed version of call-by-value:

%hlf.

tp : type.
o : tp.
=> : tp -> tp -> tp. %infix right 3 =>.

e : tp -> type.
v : tp -> type.
app : e (A => B) -> e A -> e B.
lam : (v A -> e B) -> v (A => B).
inj : v A -> e A.

ce : type.
cv : tp -> type.
capp : cv (A => B) -> cv A -> (cv B -> ce) -o ce.
clam : (cv A -> (cv B -> ce) -o ce) -> cv (A => B).

cps : v A -> cv A -> type.
cpse : e A -> ((cv A -> ce) -o ce) -> type.

cps/lam : cps (lam E) (clam E’)
<- ({x:v A}{x’:cv A} cps x x’ -> cpse (E x) (E’ x’)).

cpse/app : cpse (app E1 E2)
([c :^ (cv A -> ce)] E1’ ^ ([w1] E2’ ^ ([w2]

capp w1 w2 ^ c)))
<- cpse E1 E1’
<- cpse E2 E2’.

cpse/inj : cpse (inj E) ([c :^ (cv A -> ce)] c E’)
<- cps E E’.

2008.10.6
An attempt at call-by-name:

tp : type. %name tp B.
o : tp.
=> : tp -> tp -> tp. %infix right 3 =>.

e : tp -> type.
app : e (A => B) -> e A -> e B.

229

lam : (e A -> e B) -> e (A => B).

ce : type.
cv : tp -> type.
capp :
cv (A => B) -> ((cv A -> ce) -> ce) -> (cv B -> ce) -> ce.
clam :
(((cv A -> ce) -> ce) -> (cv B -> ce) -> ce) -> cv (A => B).

cps : e A -> ((cv A -> ce) -> ce) -> type.

cps/lam : cps (lam E) ([k] k (clam E’))
<- ({x:e A}{x’:(cv A -> ce) -> ce} cps x x’ ->

cps (E x) (E’ x’)).
cpse/app : cps (app E1 E2)

([k] E1’ ([a] capp a E2’ k))
<- cps E1 E1’
<- cps E2 E2’.

2008.10.7
Now the following in uniftwelf doesn't terminate! Based on lp from the

examples directory.

o : type.
pf : o -> type.
forall : (o -> o) -> o.
forallb : ({a:o} pf (A a)) -> {T:o} pf (A T).
whr : pf A -> pf A -> type.
whr_forall : whr (forallb D T) (D T).

Compiling fontforge again on the Eee, I also needed to tell it where X
was:
--x-libraries=/usr/X11R6/lib --x-includes=/usr/X11R6/include

2008.10.8
Remembering and reconstructing some stu� about weak ω-categories:

α′ : cnf ≡ cng α : dng ≡ dnf idn−1
α′ ◦−n f ◦−n id

n−1
α ∼n g

f ∼n+1 g

f ∼n+1 g reasonable to ask if dn
∗f = dn

∗g.

230

2008.10.9
Need to nail down a good example of coverage checking on worlds specif-

ically.

2008.10.10
Should check if things work with double-check turned on after I �x this

termination bug.

2008.10.11
A `topologization' of a category should be something like subdividing it

until you `can't tell the di�erence'. Does topological continuity fall out of
Scott-style (and ultimately Brouwer-style) computational continuity?

2008.10.12
Could hypersequents be generalized to linear logic? To a more general

notion than disjunction at the `hyper' level?

Have been poking around with SMLNJ's FFI features. They're pretty
under-documented.

2008.10.13
Finally got a feel for what I think Girard has been getting at about

coinductive proofs of `sanity' for, say, linear logic. In the classical setup
logical connectives are nearly just arbitrary operations on derivations, but
it so happens that they come in dual pairs which satisfy identity and cut
elimination.

2008.10.14
Peter Lumsdaine's talk was interesting again today. He said he didn't

see anything obviously wrong with my approach to weak ω-categories. I
still have relatively little con�dence as it is.

2008.10.15
Started just writing code in SML to speak the X11 protocol directly.

2008.10.16
Working pretty well. I can get interval timers nicely by just passing

arguments to select.

2008.10.17
Had a nice set of ideas today, starting during lunch.
The �rst intuition was, okay, how do we get a good, axiomatic notion of

topology with direction? (apart from existing attempts based on slapping
a local poset structure on a space) I tried to imagine a closure operation

231

that acted asymetrically, which took only limit points that were approached
`from one direction'. What axioms might that satisfy? In fact, all the usual
ones! I thought for a moment I didn't even need to step outside the category
Top to get the theory I wanted. After all, the upper limit topologies on R
are perfectly sensible topologies.

But then eventually I remembered that these topologies lack all kinds
of nice properties � they make the reals totally disconnected, for one. I
thought about imposing ordinary continuity on top of, say, upper limit
continuity, but that seemed horribly asymmetric.

Then I convinced myself that a function that is both upper limit con-
tinuous and lower limit continuous i� it is continuous and monotone. So
the solution seemed to be to require maps to be at once continuous in both
topologies.

2008.10.18
Whittled down Anders's twelf coverage counterexample a bit.

o : type.
%block b : block {w:o}.

a : o -> type.

pred : (a X’ -> a X) -> type.
pred/case : pred D.

rel : a X’ -> a X -> type.
rel/case : rel D D.

thm : ({h:a X} rel (D1 h) (D2 h))
-> pred D1 -> pred D2 -> type.

%mode thm +R +P1 +P2.

%worlds (b) (thm _ _ _).
%covers thm +R +P1 +P2.

This yields a Bind exception.

2008.10.19
Read some stu� about model categories.
On the one hand, there seems to need to be work done to get local

pospaces to even be a cocomplete category, whereas multiple topologies
seem to obviously have colimits.

In fact I bet the reason they do has to do simply with taking limits
in Cat of diagrams of categories and functors that appropriately preserve

232

(or re�ect, or create, maybe) colimits. For the category of sets with two
topologies is just the pullback of the forgetful functor from Top, isn't it?

On the other hand, the whole enterprise of model categories seems to
be to avoid size issues when trying to localize � i.e. create formal inverses
for � a certain collection of morphisms. From some kind of topological
standpoint, all that this is doing is removing structure, i.e. destroying open
sets. I wonder if this programme could be pushed through and sidestep all
these �ddly size issues?

Too bad I don't know what the homotopy theorists want to quotient
out by weak equivalence for, exactly. It's certainly not that I can't imagine
it being desirable, I just don't know a speci�c theorem that I could prove
by better means.

2008.10.20
Realized the sort of obvious fact that the Sierpinski space is dually the

`coshape' of the `cocells' in a topology that are open sets, which you discover
by maps into it from a generic category, just like the one-object and one-
arrow categories are the shapes of cells in a category, discovered by maps
out of them.

It's very obvious that nTop is not embeddable in Top. You can classify
objects by the number of points they have, and there are di�erent numbers
of two-point objects in each nTop (2n−1(2n + 1)).

I wonder about Chu spaces, though.

2008.10.21
Peter Lumsdaine's talk actually de�ned weak ω-categories a la Leinster

today: they are algebras for the initial globular-operad-with-contraction.
The contraction machinery is beautifully mysterious. Just by demanding
one-directional connectnedness of any two ways of composing the same
data, you seem to get everything you need.

2008.10.22
Okay, at least a patch to uni�cation from last month doesn't have the

termination bug.

2008.10.23
Another obvious notion of co-cell in topology: maps to the two-point

discrete topology ((∗)(∗)) are `disconnections' of a space.
Is this all cohomology is?
The higher-dimensional generalizations of this seem like they ought to

be maps into the boundaries of spheres.
To map Bn+1 into a space in such a way that two points are both in

the image shows that they are connected; to map a space into Sn in such a

233

way that two points are separated shows that they are disconnected.
I'm tempted to try to show: if there is no 2-cell from f to g inside

some space X, then in fact there is a map from X to the `oriented circle'
that has two segments running from left to right. But this is very much like
path-disconnectedness implying disconnectedness, which does not generally
hold.

Take the extended long line; we lack evidence that it is disconnected (be-
cause we cannot form a map to 2) and evidence that it is path-connected
(because it is too long to be covered by a path) This seems very intuition-
istic.

Let b : B → X. We say b is h-path-connected (for h : B → C) if there
is a path π : C → X such that πh = b. We say b is disconnected if there is
a retraction r such that rb = id.

Easy fact: if b is h-path-connected and disconnected, then h is discon-
nected.

Double topologies nearly embed into the category Bubenik uses in one
talk, where you take a topology together with a class of directed paths
that are supposed to be closed under composition with each other and also
monotone nondecreasing maps from [0,1] to itself.

A counterexample to the obvious embedding you'd try is again the (this
time directed) extended long line. Depending on whether we make the
extended `point at ω1' open or not, it is disconnected or connected. Yet
the obvious embedding into the category of topologies-with paths doesn't
detect this potential connection. The result is path-disconnected in either
event.

No, wait, I stil detect a di�erence in that the overall topology detects
the connection. Still, I'd conjecture the obvious embedding is not injective
on isomorphism classes of objects.

2008.10.24
The fact that composition works at all in a category seems to be a kind of

Siefert-van Kampen theorem... The coequalizer in Cat of two arrows joined
end-to-end has only one essential arrow from beginning to end. Conceivably
it has more than one, but they had better be glued together universally,
i.e. contractibly.

It seems to be the case that the interval 2 is then appropriately a weak
coequalizer.

Luis Caires told me a bit about session types; they seem to have to do

234

something with linear cut elimination. Reads and writes are dual `pure'
indexed abstract modalities, I think.

2008.10.25
I have been thinking lately about the tower of spheres Sn and balls Bn.
Imagine we have a functor � : C→ C and natural transformations c, d :

id→ � and i : �→ id. Think of� as something like (2×�). it `cubicalizes'
an existing object. We require id = ic = id, and call such a functor a boxad.
A morphism of boxads �1 → �2 is a natural transformation α : �1 → �2

such that αc1 = c2, αd1 = d2, and i2α = i1, as you'd expect.
Given a map ∂ : S → B (which we imagine to be a coboundary map

from an (n− 1)-dimensional sphere to an n-dimensional ball) we can come
up with the sphere and ball of the next higher dimensions.

Compute the two pushouts

B
γ1 - S′

S

∂

6

∂
- B

γ2

6

�B
ρ1 - B′

�S

�∂

6

i
- S

ρ2

6

The appropriate map ∂′ : S′ → B′ results from using the left pushout's
universal mapping property on ρ1c and ρ1d. It follows from naturality of
d, c that the pushout UMP is applicable. There's a bunch of other maps
we can grab (such as I : B′ → B from the UMP of the right pushout on
iBx and ∂) that mean we have actually de�ned two boxads in the coslice
category S/C. The arrow across the left pushout S → S′ is the result of
applying one of them, and the arrow ρ2 : S → B′ is the other. And of
course ∂′ is a map of boxads from the one to the other.

But in general if a category has coproducts, then (X+X, inl, inr, [id, id])
is bound to be the initial boxad, and since we tacitly assumed pushouts,
the coslice category has coproducts.

So it's no surprise there's a good map S′ → B′! For S′ arises from the
initial boxad applied to ∂. The curious thing is how we lifted the boxad �
to a boxad on the slice category.

If we iterate this construction, we get a nice `globular object' Bn with
codomain and domain maps going up. The globularity condition falls right
out of commutativity of pushout squares.

The thing is, since the spheres always come out of the initial boxad,
perhaps the balls should come from a �nal boxad? If its �nality is somewhat
weak � if it's something that smells like `up to homotopy' � then this

235

actually seems rather reasonable in Top. Then making a sphere out of
something is the free way of making it contractible.

I really would like to say something like: `a collection of things like weak
ω-categories' is a category with a (weakly) initial and (weakly) �nal boxad,
maybe satisfying some further axioms. One probes the `cells' of an object
X by studying maps from Bn into X. A homomorphism X → Y is just a
map in the category. A 2-cell between f and g is a map α : �X → Y such
that αd = f and αc = g. `And so on,' though I'm not quite sure what that
means.

I think I need some changes in policy.
One: paradoxical anti-procrastinatory policy of no work after 5pm, but

simultaneously requiring that I get some work done every day.
Two: break T category in work requirement system into more subcat-

egories so that no project among those that require continuous e�ort gets
left behind.

(TW) Thesis writing

(TFU) Required programming: uni�cation

(TFC) Required programming: coverage

(TE) Required email or other communication, if any outstanding

Just now did

(TW) Copied in some of the section on substructural nominal logic, worked
on introduction

(TFU) Poked at some debugging code on Anders's counterexample

(TFC) Ran kolm on svntwelf-20080917; broke as before

(TE) Emailed Brigitte back

2008.10.26
Game idea: something like bridge bidding with OSPD words. An in-

centive to repeat words. An incentive to have your convention be partially
discoverable even by your `oppponents'.

(TW) Cleaned up the section on substructural nominal logic

(TFU) Wrote better debugging code, made progress understanding the role
of LVars.

236

(TFC) Wrote the following code to run regression tests. Ran them all with
doubleCheck turned on, and they still work, with the exception of
course of kolm.

(TE) Work-related email queue empty. Paid the electric bill.

fun dir "XXX" = raise Match
| dir s = ("/home/jcreed/sb/twelfs/svntwelf/examples/"

^ s ^ "/")

fun cfg "XXX" = raise Match
| cfg _ = "sources.cfg"

fun runtest s =
let

val _ = print ("=== Running test " ^ s ^ "\n")
in

OS.FileSys.chDir (dir s);
Twelf.make (cfg s)

end

fun go () =
let
in

runtest "arith";
runtest "ccc";
runtest "church-rosser";
runtest "compile/cls";
runtest "compile/cpm";
runtest "compile/cps";
runtest "compile/cxm";
runtest "compile/debruijn";
runtest "compile/debruijn1";
runtest "cpsocc";
runtest "cut-elim";
runtest "fj";
runtest "fol";
runtest "guide";
runtest "handbook";
runtest "incll";
runtest "js4";

(* runtest "kolm"; *)
runtest "lp-horn";

237

runtest "lp";
runtest "mini-ml";

(* runtest "modal"; *)
runtest "polylam";
runtest "prop-calc";

(* runtest "small-step"; *)
(* runtest "tabled"; *)

runtest "tapl-ch13";
()

end

2008.10.27

(TW) Took out a section reference that doesn't exist. Am I even going
to mention much about ordered logic programs in HLF beyond pure
speculation?

(TFU) Imported debugging code from the debug.svntwelf branch.

(TFC) Found a �x that works, but my understanding of the secod substitu-
tion in an LVar is still sketchy. Emailed Frank asking what was up
with it.

(TE) Paid gas bill. Emailed gwillen and said I would call Paula about the
age of the house.

2008.10.28
My notion of `boxad' is called a cylinder endofunctor in Grandis's writ-

ing.
Lots of good stu� in Applied Categorical Structures 15(4).

(TW) Removed some more bad section references. Need to look up where
various lemmas are coming from.

(TFU) Took another look at the discrepancy between kolm under the new
and old code. Seems like very small potatoes, and every evar in sight
seems to support the amount of eta-expansion happening.

(TFC) Removed printfs so I could run my code on anders original example.
It gives a coverage error. I suppose this to be correct? I am not sure.

(TE) Emailed rob simmons back about talt regression. Balanced check-
book.

238

2008.10.29
Advisor meeting today; need to rethink coverage for blocks.

2008.10.30

(TW) I think I copied and pasted proof irrelevance junk in here for some
reason.

(TFU) Safety of eta-expansion is asymmetric, remember; it's `okay' to con-
tract, but not to expand. I wonder if aggressively contracting instan-
tiations might work?

(TFC) Block declarations are like indexed type de�nitions. Can I squeeze
this intuition to any purpose?

(TE) Need to call health insurance provider.

2008.10.31

(TW) Made a couple more small edits.

(TFU) Tried some more eta-collapsing. Didn't help yet.

(TFC) Ran new uni�cation code on talt suite. Seems to work. Is talt the
one I want?

(TE) Called insurance people. Apparently I'm liable for the �rst $350 per
year. That's pretty fucking annoying.

2008.11.1

(TW) Thought about linear token monad.

(TFU) Tried a di�erent spot, still didn't work.

(TFC) No, I wanted ts-lf. Breaks with double-check on.

(TE) Mailed check for allergist bill.

2008.11.2

(TW) Fixed part of statement of substitution theorem

239

(TFU) Tried to eta-collapse after invertSub in recursive position (when called
by invertEVarW’) rather than in the interface, and this seemed to
work, and even �xed the bug. This merits further investigation, but
is very exciting.

(TFC) Shrank rob's counterexample.

(TE) Queue empty

Actual (say, catalysis-centric) chemical reactions are poorly modelled
in linear logic because of a lack of negation to represent quiescent self-
transitions � but it seems one can use non-exponential modalities to make
up for it.

2008.11.3

(TW) Abstract

(TFU) Di�ed the outputs � seem to be just the same!

(TFC) Rob's bug seems to have gone Heisen-. At chatter:=7, the bug van-
ishes. Something about the printExp in �nitary1 in cover.fun

(TE) Need to talk to Jen about reimbursements, Ryan about deposits

2008.11.4

(TW) Acknowledgments

(TFU) Ran old tests. Seems to work!

(TFC) The heisenbug stems from whnf doing lowering imperatively. Fright-
ening! Maybe it should be trailed is all, though? The ultimate cause
once I stop that, though, is something in the coverage of lvars again
I think.

(TE) Voted.

Suppose I try to axiomatize the category of ω-categories. Certainly
there are objects 1, 2, and arrows s, t : 1 → 2. I also know there to be an
object 3 and arrows f, g, gf : 2→ 3.

240

2
g - 3

1

s

6

t
- 2

f

6

I expect this to be a kind of weak pushout, so that if I have an `equality'
between ks and ht for h, k : 2→ X, i.e. a 2-cell, I get a suitably universal
1-cell.

X

2 g -

k

-

3

-

1

s

6

t
- 2

f

6

h

-

2008.11.5

(TW) Edits

(TFU) Even with the �x, the full kolm doesn't work, trying to abstract over
a substitution that has an underscore still left in it apparently.

(TFC) Tried to trail printing, but CSManager doesn't seem to exist there.
Not sure what to do.

(TE) Paid rent and water bill. Need to note how much it is.

2008.11.6
Here is an improved idea for de�ning a weak ω-category.
Abbreviate strict ω-category by soc. Likewise `woc'.
An soc is object-contractible if for any two objects A, B in it, there exists

an arrow f : A → B. It is said to be contractible if it and all its hom-socs
are object-contractible.

241

Two objects in an soc are contractibly equivalent or just equivalent if
there is a subsoc containing both of them.

A woc is a subset W of the cells of an soc S (called a woc `based on S')
that is `contractibly full' i.e. for every object in S there is an equivalent
object in W , and likewise for every pair of objects A,B in W there is a woc
based on S(A,B).

I was tempted to say that a map between wocs is a map between socs
that preserves the subset. This doesn't seem to work, however. Take the
soc 3 that has two arrows that compose to a third, which is also a woc by
including everything. Take also the soc 3′ that has another arrow in the
same niche as the composite, which is equivalent to it, and the woc that
includes everything.

I feel that I should be able to have a weak map 3 → 3′ that sends the
composite not to the composite, but to its equivalent doppelgänger. The
requirement of preserving the subset together with the requirement that
ω-functors preserve strict composition prevents this.

So maybe a woc-map is just a soc-map, and we shift our expectations
of what a functor tells us. Instead of giving the object (arrow, 2-cell, ...)
that is the result of hitting an object (arrow, 2-cell,...) with the functor,
we only �nd out which cells are valid outputs.

(TW) Edits

(TFU) Futzed with the remaining bug in kolm. Actually getting a case where
I have unresolved constraints where before I didn't.

(TFC) The Inst branch of the type Block is used in tomega. My version of
the counterexample from rob seemed broken. Fixed it. Spent a while
writing a little bit of trailing code for whnf, can't con�rm that it is
actually useful, though.

(TE) Paid electric bill.

2008.11.7

(TW) Edits.

(TFU) Generated a slightly smaller counterexample for kolm.

(TFC) Poked at coverage code � still a surprising typing error showing up.

(TE) Emailed ryan about deposit.

242

Talked to neel about logical relations and stu�.
It turns out the stu� at the heart of it is quite simple.
Suppose I have types A and B and a binary relation R over values of

A, B. It is possible to lift R to a binary relation C(R) : C(A)→ C(B) for
any type operator C(α). At α I just get R, at base types I take the identity
relation, and at types derived from the cartesian closed structure of types,
I use the cartesian closed structure of relations.

The fundamental of logical relations is just that for any term M :
∀α.C(α), we get (M [A])C(R)(M [B]).

How can I generalize this? To go from types to pairs of types I have
some functor D : Cat→ Cat. Then from a pair of types I should be able
to get a notion of relation, i.e. a category R. So this is like an indexed
category sitting over D(C), as a functor R → D(C). Remember, C is
just the type theory we started with. So now C is a type operator, a map
C→ C. Don't know how to go any further.

2008.11.8
Is it the case that we can still analyze the canonical forms of e.g.

∀α.(α→ α→ α)→ ((α→ α)→ α)→ α?

2008.11.9

(TW) Edits.

(TFU) On further counterexamples for kolm: compare against clean code to
make sure intermediate stages are actually things I expect to reason-
ably construct.

(TFC) The code of Karl's that frank Forwarded me seems to be ts-lf, with
the same bug! Except on my code I get the double-check violation,
and on clean code I get a hang.

(TE) Checked about meeting tomorrow.

A positive Σ type almost begins to make sense if asynchronous decom-
position of positive types (i.e. pattern decomposition) takes place in the
opposite order that I am accustomed to � that is, if you decompose types
earlier in the dependency order �rst.

Alternatively you can make Σ sort of a ⊗!-like thing, where it creates
one pattern variable and one ordinary variable (the ordinary one being

243

the bound one) and then the order of asynchronous positive decomposition
doesn't matter.

2008.11.10
I would claim that block declarations can be reduced without loss of

generality to the case of `some Γs block a Γs'. This doesn't totally settle
the question of which substitutions need to be tracked on world variables,
but it does shed some light on it.

2008.11.11
Base-type polymorphism can still support `lists of higher-order func-

tions' to some extent. One needs only inject (say) nat → nat → type into
some other base type.

Grandis puts aside bitopologies for higher-dimensional algebra on the
basis that you don't get an appropriate adjoint to ×2. But I suspect that
isn't the right cylindri�cation functor at all! Rather one that takes ad-
vantage of an in�nite family of topological structures on the carrier � the
Gray product looks very promising here.

Coverage checking in regular worlds asks the following question. Given
a context Γ that satis�es a given regular-world assumption, and a type A
over u1, . . . , un, do there exist any terms M1, . . . ,Mn coming from that Γ
that, when substituted for u1, . . . , un yield a type that has inhabitants in
Γ?

Here's my best counterexample to completeness of new uni�cation so
far:

i : type. %name i T.

o : type. %name o A.

not : o -> o. %prefix 12 not.

exists : (i -> o) -> o.

nk : o -> type.

nk_noti : ({p:o} nk A -> nk p) -> nk (not A).

nk_note : nk (not A) -> {C:o} nk A -> nk C.

nk_existsi : {T:i} nk (A T) -> nk (exists A).

nk_existse : nk (exists A) -> ({a:i} nk (A a) -> nk C) -> nk C.

nk_dnotr : nk A

<- nk (not (not A)). % double negation version of excluded middle

nk_dnotx = ([NK] (nk_noti [p:o] [u:nk (not A)] (nk_note u p NK))).

n = [p:o] (not not p).

kolm : o -> o -> type.

kolm_exists : kolm (exists A) (n (exists A*))

<- ({a:i} kolm (A a) (A* a)).

equiv : kolm A A* -> (nk A -> nk A*) -> (nk A* -> nk A) -> type.

equiv_exists : equiv (kolm_exists K)

([v:nk (exists A)]

(nk_dnotx

244

(nk_existse v

([a] [u:nk (A a)]

(nk_existsi a (NK* a u))))))

([v:nk (n (exists A*))]

(nk_existse (nk_dnotr v)

([a] [u:nk (A* a)]

(nk_existsi a (NK a u)))))

<- ({a} equiv (K a) (NK* a) (NK a)).

Also this version of it generates a Match in abstraction

o : type. %name o A.

exists : o.

nk : o -> type.

nk_noti : ({p:o} nk A -> nk p) -> nk (A).

nk_note : nk (A) -> {C:o} nk A -> nk C.

nk_existsi : {T:o} nk (A T) -> nk (exists).

nk_existse : nk (exists) -> ({a:o} nk (A a) -> nk C) -> nk C.

nk_dnotr : nk A

<- nk ((A)). % double negation version of excluded middle

nk_dnotx = ([NK] (nk_noti [p:o] [u:nk (A)] (nk_note u p NK))).

kolm : o -> o -> type.

kolm_exists : kolm (exists) ((exists))

<- ({a:o} kolm (A a) (A* a)).

equiv : kolm A A* -> (nk A -> nk A*) -> type.

equiv_exists : equiv (kolm_exists K)

([v:nk (exists)]

(nk_dnotx

(nk_existse v

([a] [u:nk (A a)]

(nk_existsi a (NK* a u))))))

<- ({a} equiv (K a) (NK* a)).

(TW) Edits.

(TFU) Discussion of kolm bug above.

(TFC) Discussion of coverage above.

(TE) Cashed Andreas's check.

245

2008.11.12
So to simplify blocks down to a special case, we change %block b :

some Γs block ∆ to

` : Γs → type.
out` : Πτ :Γs.`[τ]→ ∆[τ].

which means the e�ective grammar is something like

Projection Heads β ::= out_ _ b | out` [τ] L[↑k]
Contexts Γ ::= · | Γ, x : A | Γ, b : `[τ]
Heads H ::= c | x | β.n

L :: · ` `[τ] Γ `↑k: · · ` τ : Γs

Γ ` out` [τ◦ ↑k] L[↑k] : ∆[τ]

Γ ` b : `[τ]

Γ ` out_ _ b : ∆[τ]

Sigbovik poster idea: Book guy style
Pastiche of other famous posters?
Sigbovik paper: choose-your-own-adventure.

2008.11.13
The method is: write down the sentence you think you mean to say,

and revise it towards greater clarity.
I retain a cautious fondness for the idea of Eprime, and for the sapir-

whorfery it stands for. If we cannot change our (verbal) thoughts by chang-
ing which words we use, then what hope do we have?

Careful teasing-apart of self-loops in multitopology seems like it au-
tomatically forbids in�nite pasting diagrams. Some use of �lter-like pre-
topologies seems to still be required to require objects to map to objects
and arrows to arrows, and to prevent `thick' cells of lower dimension.

2008.11.14

(TW) Edits. My next main goal should be a chapter that just sets out HLF
and does all its metatheory.

(TFU) More tracing of kolm bug. Now it loops, apparently?

(TFC) Examined uses of LVars in cover.fun. Must remember: rob's bug only
happens if double-check is on.

246

(TE) Balanced checkbook.

2008.11.15
Remember that old stu� about the use of cartesian monads to get at

multicategories. First of all, if I have a monad T , then an algebra for T is
a map f : TX → X such that

TX

X
id

-

η

-

X

f

-

TTX
µ - TX

TX

Tf

?

f
- X

f

?

which I might want to weaken to

TX

⇑

X
id

-

η

-

X

f

-

TTX
µ - TX

⇓

TX

Tf

?

f
- X

f

?

Secondly, if T is cartesian (preserves pullbacks and µ and η are somehow
related to a pullback?) then I should be able to lift it to a monad on
the category of spans. Algebras for that monad are consequence relations
satisfying identity and cut.

Now does the two-list monad latent in Noam's focusing calculus arise
from two list monads and a distributive law?

Here's another kolm plateau:

o : type. %name o A.
k : o.

exists : (o -> o) -> o.
nk : o -> type.
z : nk W.
nk_noti : ({p:o} nk A -> nk p) -> nk (A).
nk_note : nk (A) -> {C:o} nk A -> nk C.
nk_existsi : nk (B k) -> nk (exists B).

247

nk_dnotx : {A:o} nk A -> nk A
= [A:o] [NK:nk A] nk_noti ([p:o] [u:nk A] nk_note u p NK).

kolm : o -> o -> type.

kolm_exists : kolm (exists A) ((exists A*))
<- ({a:o} kolm (A a) (A* a)).

equiv : kolm A A* -> (nk A -> nk A*) -> type.

equiv_exists : equiv (kolm_exists K)
([v]

(nk_dnotx _

(nk_existsi (NK* z))))
<- ({a} equiv (K a) (NK*)).

and this is about as small as I can make it without triggering nonter-
mination:

o : type.
k : o.

e : (o -> o) -> o.
a : o -> type.
z : a A.

/ni : (a A -> a k) -> a A.
/ne : a A -> a A -> a C.
/ei : a (B k) -> a (e B).
/e : a (e A) <- ({x} a (A x)).

thm : a B -> (a A -> a B) -> type.

thm/ : thm (/e K)
([v] /ni ([u] /ne u (/ei (A z))))
<- ({x} thm (K x) ([v] A v)).

(TW) Edits.

(TFU) More tracing of kolm bug as above.

(TFC) Poked at rjsimmon-counter. Even if I abstract back the result of
instevarsskip it looks right.

248

(TE) Edited accounting code.

2008.11.16
I thought that inductive types to the left of arrows might work in an LF-

like setting � then I thought that they didn't because they didn't satisfy
η-expansion.

That is, I can't seem to do

x : N→ a ` (foldN>a(z 7→ x z | s(w) 7→???) : N→ a

given
Γ ` e1 : a Γ, w : a ` e2 : a

Γ ` foldN>a(z 7→ e1 | s(w) 7→ e2) : N→ a

I believe this is because I shouldn't actually stop at one unfolding of N
when continuing to do focusing � it really requires the ω-rule. But maybe
I could deal with the type N′ = µα.1 + ↓↑α? That on the left side of an
arrow means N′ → a = (1 + ↓↑N′)→ a = a× (↓↑N′ → a).

Yet this doesn't seem to help because

w : ↑N′ ` x (s w) : a???

x : N′ → a ` (foldN′>a(z 7→ x z | s(w) 7→ x(s w)) : N′ → a

still seems to violate focusing discipline. The identity proof of 1 + ↓↑(1 +
↓↑(· · ·)) is still in�nite.

The focusing proof is merely in�nitely tall, though, not in�nitely wide,
so maybe I should be able to do it in the coinductive type of proofterms.
That type scares me though.

Perhaps one could think about an intuitionistically `open-ended' set
of natural-number like things that might stop, and prove theorems for any
such world? That might require a partial successor function, which is weird.

(TW) Edits.

(TFU) Reduced kolm a slight bit more.

(TFC) The standard printing code does not distinguish between di�erent
LVars and there are even comments to this e�ect. Major headdesk.

(TE) Edited accounting code.

o : type.
k : o.

249

e : (o -> o) -> o.
a : o -> type.
z : {A:o} a A.

/ni : {A:o} (a A -> o) -> a A.
/ne : {A:o} a A -> a A -> o.
/ei : {A:o -> o} a (A k) -> a (e A).
/e : {A:o -> o} a (e A) <- ({x} a (A x)).

thm : {A:o} a B -> (a A -> a B) -> type.

thm/ : thm Y (/e _ K)
([v] /ni _ ([u] /ne _ u (/ei _ (A (z X)))))
<- ({x} thm X (K x) ([v] A v)).

2008.11.17
In kolm, I am coming up against an example where a variable is uni�ed

against itself with a pattern substitution on one side, but not the other.
This is not generally safe, for I might consider the counterexample

u[a.b] = u[_.λy.b a]

which admits u ← a.b.b a. Also notice this works if we replace that
underscore by anything else, e.g. b, which appears to con�ict with a. Non-
pattern substitutions are quite powerful!

(TW) Edits.

(TFU) Kolm note above.

(TFC) Drilled down a little further. Even the very last printf before splitting
occurs is type-correct.

(TE) Edited accounting code. Ought to procure receipts and have them
ready in case I see Jen.

2008.11.18

(TW) Split things up.

(TFU) Traced through typechecking kolm counter on the whiteboard. Didn't
help much. At least I can see that no dirty tricks are required to get
the uni�cation problem solved. Maybe I just need to be more `eager'
about pruning or something?

250

(TFC) Reduced rjsimmon-counter some more.

(TE) Mentioned to Lea debt outstanding.

2008.11.19
Had an advisor meeting. Thought a little about higher-dimensional

adjunctions.

2008.11.20
The β-reduction and η-expansion modi�cations seem to run opposite

directions depending on whether you're dealing with a positive or negative
connective.

2008.11.21
Poincaré dual diagrams should just be locally like admissible cells, and

cells themselves are likewise locally `pasting' except at their `center point',
which could be higher-dimensional than just a point.

Ruby code fed into a parametric plotter over the range (−1, 1) for both
x, y, to generate a picture of an adjoint unit.

u = x * 5; v = y * 5; t = u * u * u / 3 + u * v;
t = t * 0.1; t > 1 ? 1 : t < -1 ? -1 : t

2008.11.22

(TW) Reboot.

(TFU) Reboot.

(TFC) Reboot.

(TE) Need to pay gas bill.

2008.11.23

(TW) Edits.

(TFU) Coverage needs to slacken at typing of evar expressions, not at the
typing of the evars themselves.

(TFC) Traced deeper in coverage code. Caused a nontermination problem
when I stupidly pulled a call to abstraction out of a callback.

(TE) Printed receipts for travel.

251

2008.11.24

(TW) Edits.

(TFU) Is a�ne slackening only appropriate for linear logic? Does general
HLF need something else?

(TFC) Traced coverage code. The problem is in world cases. I would have
thought this would mean �new worlds� but apparently it counts al-
ready existing ones as well, or perhaps even exclusively.

(TE) Paid gas bill.

2008.11.25

(TW) Edits.

(TFU) Could Anders' nonproo�rrelevant strategy work? It seems like a big
change this late. Should see what the implementation does tomorrow
morning.

(TFC) Oh, I see Carsten already has reported a bug here.

(TE) Talked to Jen � need an actual receipt from the hotel.

2008.11.26
I am copying the technique for encoding arbitrary uni�cataion problems

here from my livejournal entry of april 28 2007 because I keep wanting to
�nd it and looking here.

o : type.
f : o -> o.
eq : (o -> o -> o) -> (o -> o -> o) -> type.
refl : eq M M.
c : eq ([a] [b] X a) ([a] [b] f (Y (Z b)))

-> eq ([a] [b] Y a) ([a] [b] X (Z b))
-> type.

test : c refl refl.

2008.11.27

Say a point v ∈ Rn is 0-regular if f(v) 6= 0, and 0-singular otherwise.
Say it's 1-regular if it's 0-singular and fx(v) 6= 0, and 1-singular if it's
0-singular and fx(v) = 0.

252

I think I want to say of the 1-singular points that those that have fxx

and fy both nonzero are regular, and the rest are singular, but I'm having
di�culty determining why this should be the right choice.

Where I get started is the observation that fx 6= 0 while f = 0, then
there's a neighborhood such that there's exactly one 0-singular point in
each 1-dimensional slice of it, and all the 0-dimensional things on the left
of it are related to each other in a way without 0-singularities.

For take a neighborhood where (say, wlog) fx > 0 throughout. Near
the centers of its x-extremities, (which have f -values below and above zero)
�nd by continuity neighborhoods entirely below and above f. Intersect these
along every dimension other than x, and consider the product of that with
the original x-interval. This is the required neighborhood.

Certainly if fx = 0, then we risk having more than one 0-singularity
in an arbitrary nearby one-dimensional slice; just consider the graph of
y = x2.

Okay, now pop up to dimension two. We want to divide 1-singularities
into 2-regular and 2-singular points, and classify the 2-regular points by
domain and codomain.

I conjecture that 2-regular points have both fxx 6= 0 and fy 6= 0. For
suppose both are positive. Find a neighborhood where they stay so. Then
fx is negative to the left and positive to the right, and f (along y = 0) is
positive everywhere except the origin, where it's zero.

Also, we know there's exactly one point in every slice where fx = 0. We
can think of this as a function of y and all the other variables.

Here I get stuck.

2008.11.28

(TW) Edits.

(TFU) Reboot.

(TFC) Reboot.

(TE) Still have gas bill, need to get receipts.

2008.11.29
The �rst four dimensions of adjoint equivalence cells:
Simpli�ed

(1)

253

(x, 1)

(x2, 1, x)(x, y, 1)

(x3, 1, x, x2)(x2, y, x, 1)(x2, 1, xz, x)(x2, y, 1, x)(x, y2, 1, y)(x, y, z, 1)

Standard
(x)

(x2, y)

(x3, y, xz)(x2, y2, z)

(x
4
, y, xz, x

2
w)(x

3
, y

2
, xz, w)(x

3
, y, xz

2
, xw)(x

3
, y

2
, z, xw)(x

2
, y

3
, z, yw)(x

2
, y

2
, z

2
, w)

For all disjunctions in uses of the projection lemma, (parens) indicate
the one that's true by assumption, and [brackets] indicate one that's true
by virtue of forbidden polynomials.

The two-dimensional case:
Suppose I encounter f+

xx, f
+
y and f0

x . I can project fx to f along y and
still get f+

xx if f0
xy or (f0

x). Then I �nd that there's a unique singular point
with f0

x , the one I'm sitting on.
The three-dimensional cases:
Suppose I encounter f+

xxx, f
+
y , f

+
xz and f0

x , f
0
xx.

I can project fxx and fx to f along y and keep f+
xxx, f

+
xz if (f0

x) or f
0
xxy

and if fz or [fxy]. Now I appeal to the induction hypothesis thinking about
fxx to see that no other singular points occur too close.

Suppose I encounter f+
xx, f

+
yy, f

+
z and f0

x , f
0
y .

I can project fx and fy along z and keep everything nice if (f0
x) or fxy

and (f0
y) or fxy. Now I have f+

xx, f
+
yy and I want to think about the locus

where f0
x . It's still single-valued with respect to x, so project fyy to fx = 0

along x, maintaining its y-derivative. This succeeds if [f0
xy] or [f

0
xy]. Then

we �nd a unique point where f0
y .

The four-dimensional cases:
(The Typical 4-d case)
Suppose I encounter f+

xx, f
+
yyy, f

+
z , f

+
wy and f0

x , f
0
y , f

0
yy.

Project to f along z. Okay if (f0
xz or (f0

x), f
0
yyz or (f0

y), [f
0
yz] or f

0
w)

Project to fx along x. Okay if (f0
yyx or [f0

xy], [f
0
xy] or f

0
w)

Project to fy along w. Okay if (f0
yyw or (f0

yy))
Project to fyy along y. Okay, because no further derivatives need to be

preserved.
(two other cases isomorphic to this one, I think)
(Adjoint Case)

254

Suppose I encounter f+
xxxx, f

+
y , f

+
xz, f

+
xxw and f0

x , f
0
xx, f

0
xxx.

Project to f along y. Okay if (f0
xxxy or (f0

x), [f
0
xy] or f

0
z , [f

0
xxy] or f

0
w)

Project to fx along z. Okay if (f0
xxxz or (f0

xx), [f
0
xxz] or f

0
xw)

Project to fxx along w. Okay if (f0
xxxxw or (f0

xxx))
Project to fxxx along x. Okay, because no further derivatives need to

be preserved.
(Equivalence Case)
Suppose I encounter f+

xx, f
+
yy, f

+
zz, f

+
w and f0

x , f
0
y , f

0
z .

Project to f along w. Okay if (f0
xw or (f0

x), f
0
yw or (f0

y), f
0
zw or (f0

z))
Project to fx along x. Okay if ([f0

yx or f0
xy], [f

0
zx or f0

xz]???)
Project to fy along y. Okay if ([f0

yz or f0
zy])

Project to fz along z. Okay, because no further derivatives need to be
preserved.

Crap, this last one required f0
xz, which is not forbidden throughout the

entire tree, � but it is ruled out in any path that begins with a right
branch.

Let me try the last one:
(The xz2 case)
Suppose I encounter f+

xxx, f
+
y , f

+
xzz, f

+
xw and f0

x , f
0
xx, f

0
xz.

Project to f along y. Okay if (f0
xxy or (f0

x), [f
0
xyz] or f

0
z , [f

0
xy] or f

0
w))

Project to fx along w. Okay if (f0
xxw or (f0

xx), f
0
xzw or (f0

xz))
Project to fxx along x. Okay if ([f0

xxz or f0
xxz])

Project to fxz along z. Okay, because no further derivatives need to be
preserved.

(TW) Thought about proof of adequacy of relevant HLF. It's somewhat
tricky, since the translation is no longer strictly monotone in infor-
mation.

(TFU) Duplicated hlf code to start working on relevant uni�cation and cov-
erage tests.

(TFC) Poked at kolm bug.

(TE) Still have gas bill, need to get receipts.

2008.11.30
I think it might be important that I can do projections in any order to

pull out information about domains and codomains.

(TW) Thought more about proof of adequacy of relevant HLF. The thing
to do is set up two versions of LLF and two of HLF, which di�er in
synthesis vs. checking of worlds.

255

(TFU) Compiled.

(TFC) Looked at trace more.

(TE) Still have gas bill, need to get receipts, need to ask steph when they're
heading up to dad's.

2008.12.1

(TW) Edits.

(TFU) Hacking on translation and uni�cation for `relevant' HLF. The next
things to do are uni�cation cases for ∗, and translation of terms �
be sure to get lambdas and caret.

(TFC) Hacking on HLF examples.

(TE) Paid gas bill.

2008.12.2

(TW) Edits.

(TFU) Hacking

(TFC) Hacking

(TE) Need to pay rent, get receipts, call steph.

Suppose I have some function k(x, y) that satis�es k(x, y) = 1− k(y, x)
and monotone in its �rst argument, meant to represent the probability that
a game player of `strength' x beats a player of strength y.

Given that I observe ρij instances of player i beating player j, what is
the assignment of strengths σi to players that maximizes the likelihood∏

i

∏
j

k(σi, σj)ρij

or equivalently maximizes the log likelihood∑
i

∑
j

ρij ln k(σi, σj)

256

Take the partials

∂

∂σi

∑
i

∑
j<i

ρij ln k(σi, σj)

=
∂

∂σi

∑
j 6=i

ρij ln k(σi, σj) + ρji ln k(σj , σi)

=
∂

∂σi

∑
j 6=i

ρij ln k(σi, σj) + ρji ln(1− k(σi, σj))

=
∑
j 6=i

ρij
k′

k
+ ρji

−k′

1− k

0 =
∑
j 6=i

k′
(
ρij

k
− ρji

(1− k)

)
Suppose k(x, y) = x/(x+ y) then k′ = kx = y/(x+ y)2.

0 =
∑
j 6=i

σj

(σi + σj)2

(
ρij(σi + σj)

σi
− ρji(σi + σj)

σj

)

0 =
∑
j 6=i

σj

(σi + σj)

(
ρij

σi
− ρji

σj

)

0 =
∑
j 6=i

1
(σi + σj)

(
ρij

σj

σi
− ρji

)
If I set τi = σ−1

i then

0 =
∑
j 6=i

(
1 +

τi
τj

)(
ρij

τj
− ρji

τi

)

∑
j 6=i

ρij

τj
− ρji

τi
= −

∑
j 6=i

(
τiρij

τ2
j

− ρji

τj

)

Consider how the statistics get distorted for `best n out of m'. The
better player is more likely to win. Does this provide a natural time scale
for competition?

257

2008.12.3
Had a bug where I was was throwing away the substitution returned by

whnf, assuming that it was always id. It's not! It's only in times where you
get like a root back where the substitution must be id. Since evars don't
wrap their own substitution, you might get back the eclo that is the evar
and the subst.

Here's the counterexample regression test:

%hlf.

o : type. %name o A.
ca : {Q:w}

({a:w} o @ (a * Q))
-> type.

ca_axiom_l : ca _ ([x:w] E x).

The crazy symptom was a doublecheck failure where a reconstructed
implicit argument of type w was nonetheless getting applied to two argu-
ments.

Another mistake I keep making is pattern-matching on Root(BVar n,
Nil). That Nil might still be an SClo!

(TW) Edits.

(TFU) Hacking

(TFC) Hacking

(TE) Need to pay rent, get receipts, call steph, respond to m4m5 email.

2008.12.4
Here is the judgment ordering, I think, if I want to include asynchronous

decomposition:

Positive focus ≥ Positive inversion ≥ Negative inversion ≥ Negative focus

2008.12.5
Kind of gave up on representing ordered decomposition of asynchronous

things, simply cleaned up the representation of synchronous.
Noam pointed me to a 1995 lics paper by Francois Lamarche that does

something stunningly similar with token passing, but in the context of

258

double-negation translation. Surely I can say something about just plugging
in the double-negation adjunction for F , U? What deeply perplexes me is
his notion of polarity distinguishes conjunctions from disjunctions, and yet
he claims it's the same as Girard's notion.

(TW) Edits.

(TFU) Uni�cation: looked at Anders's thing. Looks great! It's exactly the
pattern fragment I'd predict from HLF.

(TFC) Coverage: falling o� the edge of the world in abstraction. Is this just
because I don't actually do uni�cation yet?

(TE) Responded to m4m5 email. Need to pay rent, get receipts, call steph,
update papers webpage.

2008.12.6
Video e�ect idea: a bunch of crawling lines each of which looks indepen-

dently like it is moving parallel to itself, but when they overlap and weave
together they form an arbitrary video.

E�cient implementation is easy if you keep a bu�er of source pixel (one
per moving line) and phase o�set, and prioritize the source pixel being
`here' if ever someone tries to draw over it.

(TW) Edits.

(TFU) Uni�cation: ok, so I'm doing uni�cation properly I think, and at least
I'm postponing nothing, but still getting the abstraction error. Dunno
what's up with that.

(TFC) Coverage: Thought more about positive connectives.

(TE) Paid rent. Need to respond to tcs email, get receipts, call steph,
update papers webpage.

2008.12.7
Instead of making F and U so concretely about linear logic, I can

think of them as being about an o�-to-the-side number (also resembling
a creation-annihilation pair)

Γ `n A

Γ `n+1 FA

Γ, A `n+1 C

Γ, FA `n C A `0 A

Γ `n+1 A

Γ `n UA

Γ, A `n C

Γ, UA `n+1 C

Γ `n A ∆(A) `m C

∆(Γ) `n+m C

259

This means that focalizing, say, ordered and bunched logic seems pretty
easy. One semi-surprising conclusion is that the bunched additive conjunc-
tion is ambipolar! But then I thought about it and I realized it is so for
roughly the same reason that the unrestricted implication is: on the �rst
day of creation we invented a context-constructor (comma in the case of
unrestricted �plain� logic, semicolon in bunched) and we gave it an inter-
nalization (some kind of ⊗, really) and a right adjoint (some kind of ().
Also separately we invented negative conjunction. But on the second day
we added structural rules to cause the positive and negative conjunction to
be equiprovable!

It's less natural to see that this was the story in bunched logic, where
if we strip away the structural properties, the positive conjunction that
internalizes semicolon becomes just a funny di�erent sort of comma. But I
believe it's the right story to tell.

Ambifortunately I see that HLF seems to have the same property, that
its additive conjunction is `plain' conjunction, both positive and negative.
So that even if I take the Church encoding of disjunction

A⊕B = ∀τ : ∗ .(A(τ) & (B(τ)(τ

I'm bound to still get

A & (B ⊕ C)@p a` A & B ⊕A & C@p

No, wait, what? To build the appropriate term left to right I need to
consume the resource p to even get the branching required. Maybe this
does work. What's going on, I don't know.

Okay, on the left I even know what type I'm eliminating at, it's X =
A & B ⊕A & C, and for positive occurrences of τ I can take it to be a free
type variable, so really

X = (A & B(τ) & (A & C (τ)(τ

So I've got

A & ((B(X) & (C (X)(X)@p ` X@p

which looks like once I consume p I've only got ε left to prove A.
And yet I can't �gure out how to refute the equivalence between the

Church disjunction and the one that goes

Γ, A[p] ` C Γ, B[p] ` C

Γ, A⊕B[p] ` C

Maybe one of them doesn't satisfy cut?

260

Okay, take the proof

A[p], B[p] ` A & B[p]

A[p], B[p] ` A & B ⊕A & C[p] + sym

A[p], (B ⊕ C)[p] ` A & B ⊕A & C[p]

A & (B ⊕ C)[p] ` A & B ⊕A & C[p]

and cut against

id

` (B(B ⊕ C) & (C (B ⊕ C)[ε]

(B(B ⊕ C) & (C (B ⊕ C)(B ⊕ C[p] ` (B ⊕ C)[p]

∀τ.(B(τ) & (C (τ)(τ [p] ` (B ⊕ C)[p]

A[p],∀τ.(B(τ) & (C (τ)(τ [p] ` A & (B ⊕ C)[p]

A & ∀τ.(B(τ) & (C (τ)(τ [p] ` A & (B ⊕ C)[p]

and I get

A[p], (B(B ⊕ C)((C (B ⊕ C)((B ⊕ C)[p] ` A & B ⊕A & C[p]

A[p], (B ∨ C)[p] ` A & B ⊕A & C[p]

A & (B ∨ C)[p] ` A & B ⊕A & C[p]

and this seems to succeed.
Well, what's the natural deduction rule I expect?

Γ ` A ∨B[p] Γ, A[α] ` C[α ∗ q] Γ, B[α] ` C[α ∗ q]

Γ ` C[p ∗ q]

I should fail to prove the sequent rule

Γ, A[p] ` C[q] Γ, B[p] ` C[q]

Γ, A ∨B[p] ` C[q]

sound then, right? Though I haven't reasoned through it yet, I think yes!
The natural deduction rule it corresponds to is

Γ ` A ∨B[p] Γ, A[p] ` C[q] Γ, B[p] ` C[q]

Γ ` C[q]

261

Augh, but they share a right rule. That can't be right. How can I internalize
the correct left rule?

A ∨B[p] = ∀C : ∗.∀q : w.(A(C)@q → (B(C)@q → C@(p ∗ q)

but this is equivalent to

A ∨B = ∀C : ∗.(A(C) & (B(C)(C

what is going on?
At least the elim rule without the epsilons makes the one that has them

admissible by substitution. And I can see soundness of the standard sequent
left rule with respect to the non-alpha elim rule.

So the α-ish left rule has to be like

Γ, A[α] ` C[α ∗ q] Γ, B[α] ` C[α ∗ q]

Γ, A ∨B[p] ` C[p ∗ q]

and this, while it satis�es identity and rules out

A[p], B[α] ` A & B ∨A & C[α]

A[p], (B ∨ C)[p] ` A & B ∨A & C[p]

I'm worried it doesn't satisfy cut because of that p∗ q in the conclusion. So
let me again take the derivation

A[p], B[p] ` A & B[p]

A[p], B[p] ` A & B ⊕A & C[p] + sym

A[p], (B ⊕ C)[p] ` A & B ⊕A & C[p]

and try to cut in

B[α] ` (B ⊕ C)[α] + sym

(B ∨ C)[p] ` (B ⊕ C)[p]

Yes, there's a failure of a commutative case lurking there.
If I have

Γ, Ai[α] ` D[α ∗ q]

Γ, A1 ∨A2[p] ` D[p ∗ q] Γ, D[p ∗ q] ` C[r]
cut

Γ, A1 ∨A2[p] ` C[r]

I lose parametricity if I try to commute.

262

I want to �gure out why the Church encoding doesn't e�ectively create
this elim rule. Is the focusing discipline satis�ed suitably? I seem to have
no choices about how to polarize

A⊕B = ∀τ : ∗ .(A(τ) & (B(τ)(τ

and if I put it @p, then I suppose I am considering @ to be negative.

D[p ∗ q] ` D[p ∗ q]

Ai[α] ` D[α ∗ q]

` Ai (D[q]

` (A1 (D) & (A2 (D)[q]

(A1 (D) & (A2 (D)(D[p] ` D[p ∗ q]

∀τ : ∗.(A1 (τ) & (A2 (τ)(τ [p] ` D[p ∗ q]

∀τ : ∗.(A1 (τ) & (A2 (τ)(τ@p ` D[p ∗ q] D[p ∗ q] ` C[r]
cut

∀τ : ∗.(A1 (τ) & (A2 (τ)(τ@p ` C[r]

It looks as if I was cutting against the wrong thing � should be the
D[p ∗ q] ` D[p ∗ q], not the blob involving αs. But that D[p ∗ q] only arose
as a lucky synchronous guess. What's the more general case?

D[p ∗ q] ` E[s]

Ai[α] ` D[α ∗ q]

` Ai (D[q]

` (A1 (D) & (A2 (D)[q]

(A1 (D) & (A2 (D)(D[p] ` E[s]

∀τ : ∗.(A1 (τ) & (A2 (τ)(τ [p] ` E[s]

∀τ : ∗.(A1 (τ) & (A2 (τ)(τ@p ` E[s] E[s] ` C[r]
cut

∀τ : ∗.(A1 (τ) & (A2 (τ)(τ@p ` C[r]

Suggesting the sequent rule

Γ, Ai[α] ` D[α ∗ q] Γ, D[p ∗ q] ` E[s]

Γ, A1 ∨A2[p] ` E[s]

if D is a negative atom, then this forces E (since D it is still in focus) to be
the same atom. But perhaps it isn't! Indeed, this rule allows me to `cut'

263

through A ⊕ B, in a way that is never essentially eliminated, allowing a
proof of A & (B ∨ C) ` A & B ∨A & C.

So what I really want is a ∀ over all negative atoms. I'm still worried
that it looks like it has the same right rule, but it's worth investigating.
Especially because if I think of atoms as indexed zero-ary connectives, then
the ∀ is ultra-predicative, i.e only quanti�es over the index domain, not
propositions at all!

On second thought, maybe the intro rules are di�erent, and what's more
correct. If asynchronously a disjunction tosses a hypothetical negative atom
τ into the context and gives me (A (τ) & (B (τ) then every time I
use those I have to use up that τ against the conclusion rather than keep
it around. Strangely, A⊕B still exists, and I cannot prove A∨B ` A⊕B
(but I can prove the converse). To prove the identity A∨B ` A∨B I must
decompose the right to make it a negative atom, then decompose the left.

If I want to truly `incorporate' A ∨ B I suppose it might go in some
syntactic category that generalizes negative atoms.

This whole story should play out similarly with A ∧ B and A ⊗ B, I
suppose.

Γ, Ai[α] ` a−[α ∗ q]

Γ, A1 ∨A2[p] ` a−[p ∗ q]

Γ, A1[α], A2[β] ` a−[α ∗ β ∗ q]

Γ, A1 ∧A2[p] ` a−[p ∗ q]

Perhaps this is �nally a justi�cation for those funny `frame elimination
rules' I had so long ago.

If all positive connectives are actually second-order negative connectives
in Church-disguise quantifying over negative atoms, then there's no obstacle
to applying positive left rules at any time, since we can always by inversion
get the right hand side to be an atom.

(TW) Thought about positives, made more progress.

(TFU) Uni�cation: Hacking.

(TFC) Coverage: Hacking.

(TE) Talked to Jess about scheduling. Need to pack, cash checks, respond
to black friday, tcs emails, get receipts.

2008.12.8
I should see what results I can extract from the self-adjunction

�(p− a�(p−

264

noting that both functors are contravariant, so here I demand A → UFA
and also B → FUB.

Weirdly it seems one of them should still be positive � I suppose I have
to squint at the convtravariance to make that go away.

Okay, so proof search inside that particular monad requires that I de-
compose a(p− on the right, otherwise focusing on it on the left will fail.
And if I do choose N (p− on the left, I need to keep decomposing it until
I get to the p−, don't I? Hm.

Current type reconstruction bug is this:

%hlf.

sow : type.
reap : type.
seed : type.

sow/z : sow o- reap.
sow/s : sow o- (seed -o sow).
reap/z : reap.
reap/s : reap o- seed o- reap.

lemma1 : {A:w} sow @ A -> reap @ A -> type.
lemma : {A:w} {B:w} sow @ A -> reap @ B -> type.

lemma/s :
({a:w} {x:seed @ a} lemma1 _ (SOW _ x)

(reap/s _ REAP a x))
-> lemma1 _ (sow/s _ SOW) REAP .

It generates epsilon for the world the lemma is working at, rather than
a free world variable. If I set (SOW _ x) instead to (SOW a x), then it's
�ne.

I think I'm going to plow ahead and see if I can get coverage for a more
explicitly-typed version.

Made some solid progress!
Bugs apart, I should probably prioritize uniqueOccur over singleton

checking in uni�cation; uniqueOccur can dispatch some cases that result in
postponed constraints otherwise.

265

I notice coverage, when splitting on worlds, picks up all the garbage
arti�cial �world constructors� at the beginning of the signature. Should �x
that.

The main thing is I don't anticipate actually using the world index
on metatheorems and it's just causing problems. All the worlds should
be quanti�ed arguments to the metatheorem, where they have sensible in-
put/output status.

(TW) Thought more about positives.

(TFU) Uni�cation: Hacking.

(TFC) Coverage: Hacking.

(TE) Cashed checks. Need to pack, respond to black friday, tcs emails, get
receipts.

2008.12.13
The Nullstellensatz says that the comonad arising from the adjunction

I a V (where I computes the polynomial ideal of a subset of An, and V
computes the variety of an ideal) is exactly

√
�.

p ∈ IS ⇔ S ⊆ V (p)

2008.12.15
I've returned for some reason to thinking about string diagrams in terms

of piecewise linear approximations.
Say a signature Σ is a collection of sets (Si)i∈N. Then an n-diagram

over Σ is a map d from Rn to
∐

i Si such that for every point x ∈ Rn that
d takes to a label ` ∈ Si, there is a U 3 x for which f−1(`) ∩ U ∼= Ri �
speci�cally we mean the inverse image of that label in that neighborhood
is a linear subspace of the local linear space centered at x of dimension i
� and for every `′ ∈ {Sj | j ≥ i} other than `, we have f−1(`′) ∩ U = ∅.

Then a notion of category should be some restriction on these labellings
that only permit diagrams that are �well-domained�.

Say the class of diagrams is called D. A category is a mapping k from∐
S to D for which the `local picture' at the origin is always equal to the

`global picture', and which at the origin yields the label that was fed into
k in the �rst place.

266

A category as we know it is one that is equipped with enough 2-cells
that 1-cells can go `in any direction they like' as long as they don't reverse
in 2-time.

We depart from the free category on a graph to the extent that extra
2-cells exist, postulating facts about composition.

I wonder how one could be agnostic about the primitivity of cells � if I
stick in a 2-cell that allows composition of two 1-cells to yield a third, then
it necessarily does so `at a particular angle'. And when I'm in a setting that
allows arbitrary bending of 1-cells, then `molecular' 2-cells always exist that
allow me to compose at all other angles � but these aren't `primitive'.

2008.12.17
Here's another angle.
Given an n-category, the collection of string diagrams one can draw

using its cells in a varying open subset of Rn is a sheaf.
But it actually has more structure! We can restrict our attention to

diagrams de�ned over the box Bn =
∏

n(−1, 1). The notion of restriction
in the presheaf over open sets is replaced by `restriction-and-zooming-in',
an operation that takes a diagram over Bn and some other box b ∈ B =
{
∏

0≤i<n(ai, bi) | −1 ≤ ai < bi ≤ 1} to a diagram over Bn.
We can then require that structure to satisfy functoriality and pasting

axioms like we would a sheaf.

Actually, I think what I want is sheaves for a certain Grothendieck
topology. The category has one object, and morphisms are functions that
take Bn to itself in some nice rectilinear shrinking way. A covering sieve is
just one where the union of the ranges of all the maps in it covers Bn.

Wikipedia gives the condition for a presheaf F : Sets → Cop to be a
sheaf on a site (C, J) to be the following: Let an arbitrary objectX ∈ C and
a covering sieve S on X from the topology J be given. Now S, being a sieve,
is a subpresheaf of what we get if we hit X with the Yoneda embedding,
yX. So we have an arrow ι : S → yX. Well, the hom functor for the
category of presheaves is contraviarant in its �rst argument, so we have a
function Hom(ι, F) : Hom(yX,F)→ Hom(S, F). For F to be a sheaf, this
is supposed to always be an isomorphism.

Oh! Suddenly I remember how this usually looked diagrammatically. It

267

was unique factorization of any arrow S → F through ι:

S - F

yX

-

ι
-

Now I should like from any sheaf on this site to construct a category,
and in the future more generally an n-category.

I think this proceeds by saying that the highest-dimensional cells are
straightforwardly elements of the sheaf at its only object, and the lower-
dimensional cells are arrived at by `germ'-like constructions.

Like say for any cell x in the sheaf, the `symbols' domx and codx are
candidates � maybe in fact I should call them cocandidates, since they're
not going to be �ltered but rather quotiented � for being 1-cells.

We say that any restriction of a diagram x `towards its domain' is a
future for domx and likewise any restriction towards the codomain of x is
a future of codx.

Equate any two cocandidates that share a future.

Here's where I might start imposing conditions on sheaves to get them
to be exactly the sort of things that arise from considering the string di-
agrams on a category: I would want that the domain and codomain of a
cell themselves have a coherent domain and codomain, and that the usual
conditions cd = cc and dd = dc hold.

I notice that in the encoding of a category, 0-cells are thoroughly `self-
similar' in that restrictions anywhere leave the diagram �xed. 1-cells have
a weaker property that no matter how much 2-time you knock out, there is
some point remaining that looks like the whole. Moreover there is a certain
about of 1-time you can strip away at either side so that what's left is a
0-cell.

If I think about a 2-cell embedded in 3-time, then again I can knock
out as much 3-time as I like and there is still the same 2-cell remaining,
somewhere.

2008.12.19
Some further observations:
Say the one object of the site is called X. Take a sheaf C. Say that

268

x ⊆ y (`x embeds in y') for x, y ∈ C(X) if there exists an f : X → X such
that y

∣∣
f

= x.

For the sheaf of diagrams of a category, mutual embeddability of two di-
agrams seems like a very strong condition, even without demanding that the
composite of the two embeddings is somehow `the identity' (and I wouldn't
even know what condition to impose to represent that � the site's mor-
phisms seem to `run only in the one direction' of creating �ner and �ner
embeddings, and don't approach the identity in any obvious sense)

So take the equivalence relation x ∼ y to be x ⊆ y ∧ y ⊆ x.
(incidentally: did I already mention the fact that it's easy using the

generality of Grothendieck topologies to account for �nite diagrams? For
all I need to do is restrict the sieves in the topology to those that can be
built as �nite unions of principal sieves)

Now certain morphisms f : X → X need to be selected out as repre-
senting n-temporal domain and codomain. They are going to be the things
that look like restricting to and zooming in to the n-time beginning or end
of a cell. Suppose I have sets Cn, Dn ⊆ Hom(X,X) given to me. Let
Bn =

⋃
m≥n Cm ∪Dm.

Having done that, for any S ⊆ Hom(X,X) say a diagram x is stable
for S if x

∣∣
f
∼ x for any f ∈ S.

Here is a property I probably want to demand: informally, that every
cell has an n-domain and n-codomain. Formally, for every x ∈ C(X) and
n ∈ N, there exists f ∈ Cn such that x

∣∣
f
is stable for Bn, and likewise for

Dn.

2008.12.21
Playing around with emacs stu�. Thinking about allowing editing of

BDFs by just writing some hex-ASCII conversion and using picture mode
since getting Perl/Tk to work on cygwin is surprisingly painful.

I wonder, is the common trope of emacs motions functions allowing
integers or things-that-represent-integers like marks somehow an example
of comonadic programming?

2008.12.22
Ingrid Michaelson sounds kinda like Regina Spektor, and Hello Saferide

like Ani. Something in the r's.
The emacs bdf editing works well enough to �x my broken �rst draft of

codon italic.

2008.12.23
PERs feel special because they are a coequalizer of an equalizer; a quo-

tient of a �lter. Or, symmetrically, the other of the one in both cases, I
think. How does this generalize? What process got me from the category

269

of Sets to the category of PERs?
Arrows that are the equalizer (resp. coequalizer) of a parallel pair are

by de�nition regular (epi) monomorphisms (resp. epimorphism). So do I
just want to ask for a diagram like the following?

A
f -- B- g - C

Maybe so. That actually looks fairly correct. Anything not in the image of
g are things that fall outside the PER, and A is divided up by f into stalks
of equivalent elements over B.

What's missing from this picture is the original `underlying set' over
which realizability is de�ned. Like if we have a computational process
telling us when particular Gödel numbers are equivalent, then it's doing
that over N. So maybe the full picture is

A
f -- B

N
?

- C

g

?

?

Or in fact the other side of the diagram is also mono-epi, but in the
opposite order:

A
f -- B

N
?

?

-- C

g

?

?

In Sets I can recover one side of this diagram (up to isomorphism) from
the other: N ∼= A ∪ (C \ B). The converse seems sketchy, because not
every lower-left path in such a diagram automatically looks like a PER; we
could nontrivially quotient out some of those things that aren't even in the
image of A. I guess I want the `complement' of the diagonal from A to C,
whatever that means, to be mono?

I'll retreat to the supposition that the original unbent diagram is what I
want. Perhaps a morphism from one `PER object' to another is what you'd
expect:

270

A1
f1 -- B1

- g1 - C1

A2

a

?

f2
-- B2

b

?
-

g2
- C2

c

?

Are these exactly equivariant maps? Not quite. It seems to equate
functions f, g who di�er up to equivalence on irre�exive elements. That is,
if x 6∼ x and f(x) ∼ g(x), then this is no obstacle to f = g.

But I think if I talk about morphisms over the full square diagram then
this blurriness disappears; morphisms can be distinguished as maps on the
`full space' N. So what I really want to do is identify the condition on
commutative squares that means that N is a coherent choice as underlying
set.

2008.12.26

Read Baez et al's recent paper on (de)groupoidi�cation of linear algebra.
I left a comment on the n-Category Café about wondering what happens

with groupoidifying tensors more general than just vectors and matrices.
A multilegged span

A

B
�

C
?

D

-

sure looks like just taking the three coordinates of some 3-d tensor in a
chosen basis.

Also: can I make sense of a group g acting on a groupid C (yielding a
groupoid) in such a way that |C //G| = |C|/|G| and also recover the usual
notion of group acting on a set yielding a groupoid by viewing the set as a
discrete groupoid?

I suppose the action might take an element of G and a morphism of G
and return, what, an object of G? That's not enough to state associativity
of the action. Well, what is an action normally? It's a group homomorphism
from g to the automorphism group of the set in question, of course. So I
should demand a homomorphism · from G to Aut(C).

271

What does the (weak) quotient look like? For backwards compati-
bility the objects are probably the objects of G, and the morphisms are
{(g, C) | g ∈ G,C ∈ C} with dom(g, C) = C and cod(g, C) = g ·C. Perhaps
require naturality

C
(g, C)- g · C

D

f

?

(g,D)
- g ·D

g

?

· f

But wait � did I also include the original morphisms from C? Maybe so.
I also need identities even after I quotient out a set by a group action.

No, I already have the action of the identity element of the group to
account for that.

Oh! And likewise, I still have e · f to represent the inclusion of the old
groupoid in the new. Okay, good. This diagram is actually well-formed. It
represents not a requirement of commutativities, but an imposition of them
on the otherwise free addition of morphisms (g, C). Perhaps I need to add
more still?

Arg, no, I still don't see the compulsion to include g · f for any g nec-
essarily. Maybe it's just what needs to be done.

Got to settle on a equational theory on these paths if I'm to conjecture
a Burnside property |C //G| = |C|/|G| holds in any de�nite sense.

I probably want

C
(g, C)- g · C

h · g · C

(hg,C)

?� (h
, g
· C

)

2008.12.27
It's easy to see that groupoid cardinality is preserved if one realizes it's

equivalently de�ned by

|C| =
∑
C∈C

|hom(C,�)|

Apparently this whole business is just taking weak colimits.

272

I like how allout exploits funny little niches in communicative space.
One, that things like C-a are idempotent so there's no need to execute it
twice, so bouncing it several times is put to other use.

Two, it's unlikely that you want edit the bullet-point lines using ordinary
text insertion, so it uses those for motion.

2008.12.27
When trying to simulate sexps in XML, one `wastes resources' in describ-

ing data structures that are not basically marked-up text. When simulating
XML in sexps, one `wastes resources' in describing structures that are.

Emacs has both text properties and overlays: the former feel like the
`semantics' in the old ICFP programming contest problem about HTML
optimization, and the latter feel like (a non-hierarchical version of) the
markup language itself.

The image I have is something like this:
A plain, unformatted bu�er-with-point is obviously the derivative of [α]

(i.e. α list) evaluated at the type of characters, call it ξ. So it's [ξ] ∗ [ξ].
Formatted text is a type sitting over this, with some kind of `forgetting map'
U : τ → [ξ] ∗ [ξ], which supports operations like insertion and deletion:

τ - τ

[ξ]2

U

?
- [ξ]2

U

?

Where do insertion and deletion come from, conceptually? If I'm looking
at the derivative of a monad, insertion makes sense given the monadic
multiplication � it's the interpolative replacement of the hole with some
term-with-hole. I suppose deletion is just the opportunistic inversion of
such a process � kind of like how the annihilation operator can fail if not
preceded by a creation.

I'm reminded of Benoît's point that if you create something and com-
municate it to no one, then you might as well not have created it � which
I might modify by allowing that it might have some intrinsic value to you
yourself, but admit that then it dies with you.

273

Read Cosma Shalizi's review of NKOS. It's a delicious bit of Schaden-
freude. The thing he (I think rightly) accuses Wolfram of doing repeatedly
is being technically right (that complex systems can arise from simple rules,
that CA are kinda neat, etc.) but making the mistake of thinking an idea
far more important than it really is, and failing to acknowledge others'
signi�cant working-out of that same idea. Shalizi writes:

Wolfram refers incessantly to his �discovery� that simple
rules can produce complex results. Now, the word �discovery�
here is legitimate, but only in a special sense. When I took pre-
calculus in high school, I came up with a method for solving
systems of linear equations, independent of my textbook and
my teacher: I discovered it. My teacher, more patient than I
would be with adolescent arrogance, gently informed me that it
was a standard technique, in any book on linear algebra, called
�reduction to Jordan normal form�, after the man who discov-
ered it in the 1800s. Wolfram discovered simple rules producing
complexity in just the same way that I discovered Jordan nor-
mal form.

I think I make this species of discovery all the time, and I'm not sure
what to do about it. On the one hand, it would be nice for each such
discovery to �nd other people's thinking on it, but on the other hand,
it's hard to map from `vague reinvention in private notation' to `canonical
de�nition used by broad mathematical tradition' without using a human
being, which is costly and, let's be frank, potentially embarrassing.

One thing about the way ML handles datatypes (and from what I dimly
remember, the way O'Caml handles record types) is that it establishes a
unique mapping from the name of a constructor to the name of the type it
constructs. This is directly antithetical to any attempt to have polymorphic
variants in some sense, but it's obviously useful for type inference.

Could one achieve some sort of hybrid where one can specify di�erent
names for the same constructor, each of which `suggests' a di�erent re�ne-
ment of the same type?

The creation and annihilation operators are just d/dx and x on expo-
nential power series (i.e. those with extra 1/n! coe�cients)

One possible use for `two-use' linear variables in HLF is representing
undirected graph edges.

274

2008.12.29

(TW) Reboot

(TFU) Reboot

(TFC) Reboot

(TE) Need to deal with tcs emails, get receipts.

2008.12.30
A confounding constellation of questions for tag systems: There are

situations where there are three natural classes x, y, z where I might have
good reasons for tagging them as A,A∧B,B or A,C,B where C e�ectively
means A∧B, or else I might do D∧C,C,B where D means e�ectively ¬B.

Actually these examples are a bit sloppy.
Consider a space Ω = A ∪ B ∪ C, where A,B,C are disjoint. Suppose

all my data only needs to be labelled as AB = A∪B or BC = B ∪C or B.
Then in that case, if the semantics of multiple tags is conjunctive, I need
only AB and BC as primitive tags.

But wait, interpreting multiple tags as conjunctive is not at all obvious.
Is it? I can't at all represent A here, and I can't represent AB given A and
B.

Retreating a moment to the intended semantics, the conjunctive inter-
pretation comes from treating a tag of T as meaning `this text has something
to do with T ' i.e. belongs to the set `has something to do with T '. In that
sense, if it has something to do with many topics, then I'm just taking the
conjunction.

The ambiguity I'm hunting after has to do with the fact that the set
of searches is very probably not limited in any reasonable system to exact
tags. Searching on expressions involving conjunctions and negations should
be easy.

Incidentally, why does search always seem to come back to classical
logic? What could `constructive search' mean? Is it just a restriction of
ordinary search where I don't assume that an untagged item de�nitely lacks
that tag? Perhaps so. Then it would make sense also to label items with
complex expressions, as if they were propositions known to be true at that
world.

In fact I notice there's an asymmetry of choice in the contsructive setting
whether we think of assuming the query and proving the proposition `at
the world', or vice-versa. In the classical setting, assuming A ∧

∧
Γ and

proving A lines up with assuming A and proving A ∨
∨

Γ.

275

A more general thing is to suppose the text has associated with it a
proposition P , and the query is some function F from props to props.
Search includes an item if F (P). Restricting search to substitutive functions
seems to make plenty of sense. Then the above two scenarios are just
λX.X ⇒ Q and λX.Q⇒ X for query Q.

(TW) Edited introduction.

(TFU) Recall that I suspected the problem had to do with pruning.

(TFC) Recall that much debugging output was dubious, because of naming
of LVars.

(TE) Sent email about receipts. Need to deal with tcs emails.

Songs I enjoyed on dulcimer on YouTube: `Rocky Top', `Hard Times'

2008.12.31
Further thoughts on `constructive' as opposed to classical search. I con-

jecture that the expressive power of `contravariant' and `covariant' search
di�er. What I mean by this is as follows: let D be a database of proposi-
tions, and Q be a query. Contravariant search returns the subset Q∗D =
{d ∈ D | d ` Q}, and covariant search returns Q∗D = {d ∈ D |Q ` d}.

I'd say contravariant search can be faithfully embedded in covariant if
there is a transformation f that computes a proposition from another one
(and lifts to databases in the obvious way) such that f(Q)∗f(D) ⇔ Q∗D,
and similarly vice-versa. Just for the sake of making a bet, I'd bet that
one or the other direction lacks a faithful embedding, but really, I could see
it going either way. It would be quite nice if both exist, I'm just not that
optimistic.

Actually, I needn't demand that f is used both on the database and the
query. Could be a di�erent function for each.

If I allow linear logic, then they're equivalent! Let f(X) = X (p for a
fresh atom p. Assuming everything else is nonlinear, this calls into question
decidability. But if my nonlinear stu� stays in the nonlinear fragment,
then I needn't worry about clogging my linear context with an unknown
amount of stu� � focusing should probably tell me that right away it gets
consumed and heads back to the (idempotent!) nonlinear context. Dyckho�
techniques might then still work.

The same sort of trick might be doable with Pfenning-Davies style
modality, or maybe multimodality might be required to get a closed system.

276

The question I'm really asking is about functions that take two propo-
sitions and return one. That is, which ones allow simulations of which
others? This is a natural generalization of the question of expressivity of
the single-place relation of provability in various logics, and has obvious
generalizations in turn.

A nice idiom similar to X (p is making up an atom o (for `obsolete')
to tag an item as X but only `weakly' or `obsoletely' or `deprecatedly' so:
o → X. In a database full of o → X, searching (contravariantly) for X
won't �nd it, but searching for o→ X will.

The tag X ∨ Y is similarly interesting; it will fail to show up on a
(contravariant) search for X or Y , but it will for a search on X ∨Y . It's as
if (reminding me of the topological semantics of intuitionistic logic) it lives
in the closure of X's search results and Y 's search results.

One could build a small library L of premises that are included in every
search implicitly, so that Q becomes L ⇒ Q. The library might include
inclusion or equivalence facts between tags that were decided upon after
tags were already deployed.

Heck, I could even imagine a reddit- or del.icio.us-like site that showed
you the proof-term it generated for each result so that you could agree
or disagree with particular rules! Such a thing is probably unimaginable
overkill for most people's (probably even my) needs, but it's a lovely day-
dream to have.

2009.1.1
A simple observation about tree structures.
An address in an n-ary tree is given by a �nite sequence of numbers

a = (a0, . . . , an) ∈ N, and say |a| is the length of a.
I can transform one address to another via the operation a ∗ n, de�ned

by

|a ∗ n| = n+ 1

(a ∗ n)i = [i < |a|](ai + [i = n])

(where the indicator [P] = 1 if P is true, and 0 otherwise)
Claim: any set of addresses that actually forms a tree can be obtained

by repeated use of this operation starting with the empty address. If we
don't mind empty nodes, then any set of addresses.

Let's think of this rather as a sequence of instructions n1, . . . , nk, which
generates (ε), (ε ∗ n1), (ε ∗ n1 ∗ n2), . . . , (ε ∗ n1 ∗ · · · ∗ nk). We could also
include instructions Im for m ∈ N so that the pair of instructions Im, n is

277

by de�nition equivalent to m + n, Im, and Dm providing that Dm,m + n
equivalent to n,Dm.

2009.1.2
Frank mentioned the LICS deadline is coming up. Page limit is 10 pages,

two-column. I think I'm going to try for it.

2009.1.3

Looking at my old hylo paper, it (a) is 15 pages, single-column and (b)
makes some unfortunately strong claims about the lack of applications for
the relevant version of the theory. Oh well.

2009.1.4
Thought a little about Frank's comment that worlds might be useful

for expressing things about primitive recursion over hoigher-order data. I
think what I really should do is look at Brigitte's stu� more closely and
then see if I can merely substitute out polymorphism-over-contexts with
polymorphism-over-worlds.

Apart from that, I smell the usefulness of keeping linearity as a concept
in the system (and only subsequently `backing o�' to allowing contraction
and weakening in a controlled way) so that one could plausibly do case
analysis on whether a term really uses a world-resource or not. For other-
wise I'm not sure where the case analysis that susses out the variable case
actually takes place.

2009.1.5
15 pages single column becomes 8 pages two-column, holy crap. I have

plenty of room to work in, I guess.
So it looks like I did cover dependency just �ne. What's left to talk

about? I suppose I am describing the relevant version here. It should
simplify the description of coverage and so on. I should be able to talk a
little bit about the pattern fragment, too, I suppose, mention how it winds
up being equivalent to Anders's de�nition.

Why am I doing the relevant version? It makes the metatheory simpler.
Is it just a matter of adding proof irrelevance later? No, it doesn't

seem to be. For I am quotienting out across multiple choices of worlds,
subject to the constraint that they `add up' correctly, introducing a nonlocal
interaction that is very di�cult to cope with.

I am troubled by the choice of whether to do it in spine form or not.
On the one hand, that is where all my proofs really live. I don't know that
they work that well otherwise. On the other hand, it's a novelty that gets
in the way of the fundamental ideas.

Likewise the choice of how to tease of the relevance of the worlds, I

278

guess? Between attaching it to > and attaching it to application.
Applications

• Substructural Nominal Logic

• Reasoning about Linear Sequent Calculus

• Substructural Operational Semantics

• Embed Linear Logic, LLF, Bunched Logic

• Pattern fragment?

Angles of Attack

• Hybrid Logic is cool, let's add it to something

• Logical Frameworks are cool, let's add something to them

• Linear Logic is cool, how can we reason about it?

• Kripke semantics are cool, can we do them for linear logic?

Embeddings

• LLF without >

• `LLFr' comes in two �avors, one bidirectional (worlds at application)
one synthesizing (worlds at top)

• Bunched logic doesn't get everything

• Maybe can get positives with atomic Church encoding. I feel like
the negative polarity of the atom can't change provability, but it's
probably essential for the proof going smoothly.

Priorities

• One can think about linear logic through the lens of hybrid logic

– What does this get me? A solution to the problems of making a
meta LLF

– What's hybrid logic?

– What's linear logic?

279

Outlining like this seems to be spinning my wheels. I just keep thinking
of di�erent ways of organizing everything, and make no progress until I sit
down and start writing sentences.

2009.1.6

(TW) Edits.

(TFU) Poked at code

(TFC) Poked at code.

(TE) did TCS review, paid rent and water and cell phone, scheduled advisor
meeting, need to: pay electric, gas, phone, give receipts to jen

2009.1.7
I think the right lemma for showing permutation preserves length is like

size α M+ → size (α ∗ β) P+ → size β N− → plus M N P− → type

or maybe with the arguments to plus reversed.

2009.1.8
I still want to think about uni�cation as some sort of funny judgment

where the `propositions' are term constructors and they come in pairs in
an appropriate sense.

So that f(A,B) =̇ f(C,D) becoming A =̇ C,B =̇ D has something
to do with ⊗. The fact of (A,B) =̇ (C,D) making that transition does
all the more directly. The other step going on is just fA =̇ fB becoming
A =̇ B, and ciriticially fA =̇ gB becoming bottom. This synchronization
is the mysterious thing about uni�cation. Were it not for it I could just go
on saying a bunch of boring homomorphismish things like probably even
A⇒ B =̇ C ⇒ D maps to (A =̇ C)⇒ (B =̇ D).

Though I feel like I'd want some type discipline to constrain the propo-
sitional bits to match up unconditionally: maybe there would be a co-
ercion [�] of equations into propositions, and then a pair of identical-
up-to-[bracketed]-components propositions could be turned into a proper
equation.

Actually, no, the proof irrelevance occurs at constant application, not
at equations. Something like:

A prop A′ B prop B′

A ? B prop A′ ? B′
A prop C B prop C

[A =̇ B] prop [C =̇ C]

A prop A′

f(A) prop •

280

with rules like

Γ, A =̇ B ` J

Γ, [A =̇ B] ` J
And I can either directly have rules like

Γ, A1 =̇ B1, A2 =̇ B2 ` J

Γ, A1 ⊗A2 =̇ B1 ⊗B2 ` J

or else consider (A1⊗A2) =̇ (B1⊗B2) to be an abbreviation for (A1 =̇
B1) ⊗ (A2 =̇ B2) � that is, uni�cation is (up to a point) a function on a
pair of propositions of the same shape.

Aw, crap. Trying to prove that little theorem about sow/reap I found
a bug in HLF.

%hlf.

nat : type.
s : nat -> nat.
z : nat.

plus : nat -> nat -> nat -> type.
plus/z : plus z N N.
plus/s : plus (s M) N (s P)
<- plus M N P.

size : nat -> @type.
size/e : size z.
size/* : size (s z) -o size N -o size (s N).

subtract : size M @ A -> size P @ (A * B)
-> size N @ B -> plus M N P -> type.

subtact/e : subtract size/e SIZE SIZE plus/z.
subtract/* : subtract (size/* ^ H ^ TL) SIZE1 SIZEOUT PLUSOUT

<- subtract TL SIZE1 SIZE2 PLUS1.

It fails reconstructing the last clause on doublecheck.
I can shrink it to

size : @type.
size/e : size .
size/* : size -o size -o size .

281

subtract : size @ A -> size @ (A * B) -> type.

subtract/* : subtract (size/* ^ H ^ TL) SIZE1
<- subtract TL SIZE1.

I thought it had to do with an XXX in uni�cation where I don't check
for occurrences underneath a star, but apparently it's worse than that.

With just

%hlf.
o : type.
subtract : {A:w} {C:o} type.
subtract/* : subtract (A * B * C) D.

It returns

subtract/* : {A:w} {C:w} {B:w} {D:o} subtract (B * A) D.

which is manifestly wrong. The dummy argument D is there because I'm
checking for `@type' by detecting which type families have w as their last
argument. I should �gure out a less hacky way of doing that.

Ok, I had tl in a couple places while sorting world variables instead of
tl'. Grr.

I notice that I may have to deal with fvars as well as bvars, which I
don't know how to or attempt to sort during normalization. This doesn't
seem to screw anything up, but it makes me nervous.

(TW) Edits.

(TFU) HLF implementation.

(TFC) HLF implementation.

(TE) Gave receipts to Jen. Need to: pay electric, gas, phone, balance
checkbook

2009.1.9
Reading Hazelwinkel et al's paper titled �The Ubiquity of Coxeter-

Dynkin Diagrams�. Wonderfully straightforward writing. Two things I
got out of it:

One.
A coxeter diagram is translated to a group by taking the free group

on the vertices modulo (ss′)m(s,s′) = 1 where m(s, s′) is the edge weight

282

between s and s′, taken to be 1 for self-edges, 2 for missing edges, 3 for
conventionally unlabelled edges, and m for edges labelled m.

One of the canonical lists of coxeter diagrams I see a lot in Baez's stu�
classify the coxeter groups that happen to be �nite.

Two.
The lie algebra of a lie group is exactly the collection of left-invariant

vector �elds on it, and is exactly the set of tangent vectors at the identity.
LIVFs aren't as scary as I supposed.

Take a vector �eld to be a derivation XU that (locally) takes a function
U → R to another U → R, for any open set U that �ts in a chart. Of
course the derivation has to be compatible with restriction in a presheafy
sort of way, and it also has to satisfy the Leibniz law for multiplication.
The vector �eld F that's secretly there shows up in the sense that XU (f)
for f : U → R is λx : U.(DF (x)f)(x), where D~u is the derivative in the ~u
direction.

To be left-invariant, XU has to satisfy Xy−1U (f ◦ λy) = XU (f) ◦ λy for
any y ∈ G where λy is the obvious function G → G that hits you with y
on the left. The Lie algebra structure comes from the fact that if X and Y
are LI, then so too is [X,Y] = XY − Y X.

2009.1.10
Todo today:

• writing on LICS paper X

• Update TL X

• pay electric bill X

• write CV X

• implementation goal: get uni�cation to postpone constraints, see
what happens. X It adds constraints if it �nds evars at the head
of either side of the equation, but then it �nds a constraint not of
that form.

• Get either tags or undirected links working in paraphrase

Paradiddle: 108bpm Seven-stroke roll: 125bpm.

I think I can do a `native' cut elimination theorem for a hybrid version
of linear logic including positive connectives if I have a di�erent version of
the cut principle for the two polarities.

283

Say
Positives P ::= P ⊗ P | P ⊕ P | ↓N
Negatives N ::= P (N | N&N | ↑P
Contexts Γ ::= · | Γ, α, P [α]

I might nearly just as well in this setting identify world variables with
term variables! But in the more general hybrid case I cannot. Nonetheless
I live in the `regular world' where each positive assumption in the context
comes with its own worldvar.

The cut principles are

Γ;Ω ` P [p] Γ, P [α] ` J
+

Γ;Ω ` {p/α}J

Γ;Ω ` N [{p/α}q] Γ;α,N [q] ` J
−

Γ;Ω ` {p/α}J

Ω is optionally α,N [p]. The judgment form when Ω is nonempty, i.e.
when we're in left focus, is Γ;α,N [p] ` J where α is bound in p and J (and
conceivably N in a full hybrid setting) but nowhere else. The left and right
rules for the shifts are

Γ ` P [p]
↑R

Γ ` ↑P [p]

Γ, β, P [β] ` J
↑L

Γ;α, ↑P [p] ` {p/β}J

Γ ` N [p]
↓R

Γ ` ↓N [p]

Γ;β,N [β] ` {β/α}J
↓L

Γ, α, ↓N [α] ` J

Should check the LCD1 cases here.

Γ;β,N [β] ` P [{β/γ}p]

Γ, ↓N [γ] ` P [p] Γ, P [α] ` J
+

Γ, ↓N [γ] ` {p/α}J

7→

Γ;β,N [β] ` P [{β/γ}p] Γ, P [α] ` J
+

Γ;β,N [β] ` {{β/γ}p/α}J
=

Γ;β,N [β] ` {β/γ}{p/α}J

Γ, ↓N [γ] ` {p/α}J
1I think it might be better to call what I had been calling LCL and LCR, instead

LCD and LCE, by the usual naming convention of the two inputs to the cut principle
being D and E, and not particularly left and right... Indeed I think Frank’s (and perhaps
many others’) convention is that ‘left commutative’ cuts are those that operate on D.
I’d rather use the word ‘left’ for ‘pertains to sequent left rule.’

284

Here we're using that γ doesn't occur in J .

Γ;β,M [β] ` N [{β/γ}{p/α}q]

Γ, ↓M [γ] ` N [{p/α}q] Γ;α,N [q] ` J
−

Γ, ↓M [γ] ` {p/α}J

Noting that {β/γ}{p/α}q = {{β/γ}p/α}q we do

Γ;β,M [β] ` N [{{β/γ}p/α}q] Γ;α,N [q] ` J
−

Γ;β,M [β] ` {{β/γ}p/α}J

Γ, ↓M [γ] ` {p/α}J

This doubling is getting tedious. De�ne a predicate (J, ω, p) with two
rules (where ω is either of the form α, P [α] or else the focus cell α,N [q])

(P [p], P [α], p) (N [{p/α}q], α,N [q], p)

Then the cut principle is

Γ,Ω ` J Γ, ω ` J ′ (J, ω, p)

Γ,Ω ` {p/αω}J ′

and left commutative D for ↓ is just

Γ, β,N [β] ` {β/γ}J

Γ, ↓N [γ] ` J Γ, ω ` J ′ (J, ω, p)

Γ, ↓N [γ] ` {p/αω}J ′

7→
Γ, β,N [β] ` {β/γ}J Γ, ω ` J ′ ({β/γ}J, ω, {β/γ}p)

Γ, β,N [β] ` {β/γ}{p/αω}J ′

Γ, ↓N [γ] ` {p/αω}J ′

(noting that γ is not free in ω or J ′ and that the predicate (, ,) is stable
under substitution) and left commutative D for ↑ is

Γ, β, P [β] ` J

Γ, γ, ↑P [q] ` {q/β}J Γ, ω ` J ′ ({q/β}J, ω, p)

Γ, γ, ↑P [q] ` {p/αω}J ′

285

Here I seem slightly stuck because I don't know how to back out of this
substitution...

2009.1.11
Todo today:

• whiteboard session � try demanding negative inversions to simplify
cut X This seems to work but then identity is hard as usual

• Update TL X

• more writing of CV � are references appropriate? Cover page? Re-
search statement? Anything else? X Looks like references can be
easily mentioned separately. MPI wants one with a di�erent a�lia-
tion from the submitter. I wonder who would be good for that?

• implementation goal: Find out why it's hard to add constraints on
current example, add them back. It should be no mystery why ab-
straction is falling o� the edge of the world if there are constraints
remaining, right? X Problem seemed to be that I wasn't accounting
for projections from block variables. Now it's adding all constraints
that it needs to, but still yields a few missing cases. It's quite possible
that uni�cation is failing very far away.

• writing on LICS paper

• pay gas bill

• Work more on getting tags to be useful. Is there any easy way to
insinuate in some algebra on tags?

Paradiddle: (half = RlrrLrll) still somewhat comfortable at 116bpm,
start to break down around 120bpm.

Seven-stroke roll: (whole = rlrlrlR.lrlrlrL.) Can pull o� 130bpm, but
there I start to lose precision.

Right three-stroke roll: (quarter = R..lrl) 120bpm
Left three-stroke roll: (quarter = L..rlr) 110bpm
French roll: (half = RrrLll) 120bpm

LCD↑ really does have apparent problems if I allow interleaving of nega-
tive asynchronous decomposition. I seem to always encounter an expression
that I know to arise from substitution in two di�erent ways, and untangling
it seems hard.

286

2009.1.12
Here are some thoughts about how to use my `focalizing linear logic in

itself' ideas to do right inversion, too.
⇑P = ↑P and ⇑N = N
(N (N)•L = N•

R (↑↓N•
L

(N (N)•R = ↓N•
L (N•

R

(N (N)◦L = ↓↑N◦
R (↑↓N◦

L

(N (N)◦R = ↓N◦
L (↓↑N◦

R

Lemma 0.42 These are equivalent:

• Γ `i P

• (↓⇑Γ)•, q ` (↑P)•

• (↓⇑Γ)◦, q ` (↑P)◦

• Γ ` P

and these are equivalent:

• Γ `i N

• (↓⇑Γ)• ` N•

• (↓⇑Γ)◦, q ` ↑(N◦)

• Γ ` N

Proof ↓↑N◦
R = N•

R and ↓N◦
L = ↓N•

L

↓↑(↓N◦
L (↓↑N◦

R) = ↓N•
L (N•

R

2009.1.13
Had several minor breakthroughs on the positives-in-HLF front.

Unrestricted A ::= UpN
Positives P ::= FpA | ΣP [a].P | P ⊕ P | 0
Negatives N ::= ↑P | ΠP [a].N | N & N | > | @pN | ↓a.N

Inv. Contexts Ω ::= · | Ω, P [a]
Active Contexts ∆ ::= Ω | N [p]

Contexts Γ ::= · | Γ, A
Passive Concs J ::= P [p]

Concs K ::= (; ∆ ` J) | (` P [p]) | (; Ω ` N [p]) | (` A)

287

Judgments

ΓK

Commutative Principal

+
Γ;∆ ` P [p] Γ;P [a] ` J

Γ;∆ ` (p/a)J

Γ ` P [p] Γ; Ω, P [a] ` J

Γ;Ω ` (p/a)J

-
Γ ` A (Γ, A)K

ΓK

Γ;Ω ` N [q] Γ;N [q] ` J

Γ;Ω ` J

The story of how these show up in proof search `in the wild' is left-to-
right, top-to-bottom. Commutative goes to (the same polarity) principal
when it runs out of commutative stu� to do, and principal goes back to
commutative (of the opposite polarity) when it encounters a shift.

Shifts
Γ; · ` N [q]

Γ ` UqN

Γ;N [q] ` J
s

Γ, UqN ; · ` J

Γ ` A
s

Γ ` FpA[p]

Γ, A; Ω ` (p/a)J

Γ;Ω, FpA[a] ` J

Γ;Ω ` P [p]

Γ; Ω ` ↑P [p]

Γ;P [a] ` J
s

Γ; ↑P [p] ` (p/a)J

t = U∗> ! = FεUε

1q = Fqt 1 = 1ε

P ⊗ P ′ = ΣP [a].ΣP ′[b].1a∗b

P (N = ↓b.ΠP [a].@a∗bN

∀α.N ≡ Πt[α].N

∃α.P ≡ Σt[α].P

2009.1.14
Current version of sowreap:

288

%hlf.

nat : type. %name nat N.

s : nat -> nat.

z : nat.

plus : nat -> nat -> nat -> type.

plus/z : plus z N N.

plus/s : plus (s M) N (s P)

<- plus M N P.

seed : @type.

reap : nat -> @type.

reap/z : reap z.

reap/s : seed -o reap N -o reap (s N).

sow : nat -> nat -> @type.

sow/z : reap M -o sow z M.

sow/s : (seed -o sow N M) -o sow (s N) M.

plus-lemma : plus A B C -> plus (s z) D B -> plus (s A) D C -> type.

plus-lemma2 : plus (s z) B C -> plus (s z) (s B) (s C) -> type.

plus-lemma3 : plus z B z -> plus A B C -> plus A z C -> type.

seed-subtract : seed @ A -> reap P @ (A * B)

-> reap N @ B -> plus (s z) N P -> type.

seed-subtract/*/that : seed-subtract S (reap/s ^ H ^ TL) (reap/s ^ H ^ TL’) PLUSOUT

<- seed-subtract S TL TL’ PLUS1

<- plus-lemma2 PLUS1 PLUSOUT.

seed-subtract/*/this : seed-subtract S (reap/s ^ S ^ TL) TL (plus/s plus/z).

strengthen : ({a:w} {x:seed @ a} reap N @ P) -> reap N @ P -> type.

main-lemma : sow M P @ A -> reap N @ A -> plus M N P -> type.

main-lemma/s : main-lemma (sow/s ^ SOW) REAP PLUS

<- ({a:w} {x:seed @ a} main-lemma (SOW a x) (REAP’ a x) PLUS’)

<- ({a:w} {x:seed @ a} seed-subtract x (REAP’ a x) (REAP’’ a x) PLUS’’)

<- strengthen REAP’’ REAP

<- plus-lemma PLUS’ PLUS’’ PLUS.

main-lemma/z : main-lemma (sow/z ^ REAP) REAP plus/z.

reap-zlemma : reap N -> plus z N z -> type.

thm : sow M P -> plus M z P -> type.

thm/ : thm SOW PLUS’’

<- main-lemma SOW REAP PLUS

<- reap-zlemma REAP PLUS’

<- plus-lemma3 PLUS PLUS’ PLUS’’.

Going to try to revise seed-subtract to do strengthening en passant.

It nearly worked � except at the very bottom it's highly problematic
in that I want to split on a variable but even `on paper' several cases are
apparently rather intractable. I wonder if I introduced an equality predicate
on worlds to reify some of the contsraints I could get away with it?

•L •R ◦L ◦R

P (N P •
L (N•

R uP •
L (N•

R UFP ◦
R (FUN◦

L UP ◦
L (UFN◦

R

P ⊗ P f(uP •
L • uP •

L) P •
R • P •

R F (UP ◦
L ⊗ UP ◦

L) UFP ◦
R ⊗ UFP ◦

R

↑P ff∗uP •
L uFP •

R FUP ◦
L UFP ◦

R

↓N fUN•
L u∗N•

R FUN◦
L UFN◦

R

289

U =!(<>⇒�) u =>⇒� u∗ =<⇒�

F = (!�)• <> f = �• > f∗ =< •�

FP •R = FP ◦R

UN•
L = UN◦

L

u∗N•
R = N◦

R

fuP •L = fUP ◦L

2009.1.15
Here is a funny variant of linear logic. The syntax is

Valid A ::= UB
Linear B ::= FA | A⇒ B | A !⊗ B

The judgments are ∆ `n B and Γ `0 A. ∆ can be a mix of A and B
but Γ is only A. As are subject to weakening, contraction, while Bs are
not.

The cut principle is

∆1 `n1 X ∆2, X `n2` Y

∆1,∆2 `n1+n2 Y

The rules for U and F go like

Γ `1 B

Γ `0 UB

∆, B `n B
′

∆, UB `n+1 B
′

Γ `0 A

Γ `1 FA

∆, A `n+1 B

∆, FA `n B

And the other connectives

∆, A `n B

∆ `n A⇒ B

Γ `0 A Γ,∆, B `n B
′

Γ,∆, A⇒ B `n B
′

Γ `0 A Γ,∆ `n B

Γ,∆ `n A !⊗ B
∆, A,B `n B

′

∆, A !⊗ B `n B
′

290

NL and NR are propositions.

X XL XR

P (N PR
((NL) PL

((NR)
↑P PL

⊗(q) UFPR
⊗ (1)

PL
f and PR

f are functions from prop to prop, if f is a binary operator
on props.

X XL
f XR

f

1 id id
P ⊗ P PL

f ◦ PL
f PR

f ◦ PR
f

P ⊕ P f⊕(PL
f , P

L
f) f⊕(PR

f , P
R
f)

↓N f !(UNL,�) f(NR,�)

where (!=⇒ and ⊗! =!⊗. also (⊕=& and ⊗⊕ = ⊕.
The all-pause translation is the same as earlier:

X XL
◦ XR

◦

P (N UFPR
◦ (FUNL

◦ UPL
◦ (UFNR

◦
P ⊗ P F (UPL

◦ ⊗ UPL
◦) UFPR

◦ ⊗ UFPR
◦

↑P FUPL
◦ UFPR

◦
↓N FUNL

◦ UFNR
◦

I might conjecture that UNL
◦ = UNL. I would then need UPL

◦ =
UPL

⊗(q). The round trip around the other shift works. To get lolli I could
require U(PR

◦ (B) = U(PR
(B). For the case of P = ↓N I would need

U(UFNR
◦ (B) = U(NR (B) so it would su�ce to have FNR

◦ = FNR.
For the other shift I want FPR

◦ = FPR
⊗ (1). For the right case of lolli I need

F (UPL
◦ (UFNR

◦) = FPL
((NR) and it would su�ce that

F (UPL
⊗(q)(UFNR) = FPL

((NR)

UNL
◦ = UNL FNR

◦ = FNR

UPL
◦ = UPL

⊗(q) FPR
◦ = FPR

⊗ (1)
F (UPL

((q)(UFX) = FPL
((X) U(PR

◦ (B) = UPR
((B)

F (UPL
((q)⊗ UPL

((q)) = FU(PL
((PL

((q)))

291

Arg this is a huge mess.
Let me do currying separately.

(P (N)∗ = P((N∗)

(P ⊗ P)f = P f ◦ P f

(↓N)f = f(↓N∗,�)

(↑P)∗ = P •(↑1)

If f : P ×N → N then P f : N → N .

P •N = ↑(P ⊗ ↓N)

Here I want N∗ = N , so I need P (N = P((N) and ↑P = P •(↑1).
For P = ↓N this last gives ↑↓N = ↓N∗ • ↑1 = ↑(↓N∗ ⊗ ↓↑1). For

P = P1 ⊗ P2 it would be ↑(P1 ⊗ P2) = P •1 (P •2 (↑1)) = P •1 (↑P2).
So clearly I want the stronger result that P •(N) = P • N . Okay, that

seems to work, great.

(P (N)∗ = P−(N∗)

(P ⊗ P)f = P f ◦ P f

(↓N)+ = ↑(↓N∗ ⊗ ↓�)

(↓N)− = ↓N∗(�

(↑P)∗ = P+(↑1)

(P ⊕ P)− = P− & P−

(P ⊕ P)+ = P+ ⊕ P+

2009.1.17
Trying to avoid currying by doing destination-passing style instead.

Think I might have to make the blur translation allow arbitrary tokens
at many points.

X XL
• XR

•

P (N PR
• (NL

• a 7→ ∀b.UbP
L
•a (NR

•b
P ⊗ P a 7→ ∃b.UbP

L
•a ⊗ PL

•b UFPR
• ⊗ UFPR

•
↑P PL

•? a 7→ UaFP
R
•

↓N a 7→ FaUN
L
• NR

•?

292

X XL
◦ XR

◦

P (N UFPR
◦ (FUNL

◦ a 7→ (ub.PL
◦b)(Ua(fb.NR

◦b)
P ⊗ P a 7→ Fa(ub.PL

◦b)⊗ (ub.PL
◦b) UFPR

◦ ⊗ UFPR
◦

↑P PL
◦? a 7→ UaFP

R
◦

↓N a 7→ FaUN
L
◦ NR

◦?

L R

- UNL
• = UNL

◦ NR
•a = Ua(fb.NR

◦b)

+ PL
•a = Fa(ub.PL

◦b) FPR
• = FPR

◦

∀b.UbP
L
•a (NR

•b = Uafγ.((ub.PL
◦b)(Uγ(fb.NR

◦b))

∀b.UbFa(ud.PL
◦d)(Ub(fc.NR

◦c) =

UaFa(ud.PL
◦d)(Ua(fc.NR

◦c) = ((ub.PL
◦b)(Ua(fb.NR

◦b))

Should have FaP
L
◦1 = PL

◦a
Know PL

•a = Fa(ub.PL
◦b).

Thus UPL
•? = UF (ub.PL

◦b).
Need UPL

◦? = UF (ub.PL
◦b).

I.e. UFPL
◦1 = UF (ub.FbP

L
◦1). But this is provable!

The general adjoint equations seem to be

FaX = Fa(ub.FbX)

UaX = Ua(fb.UbX)

2009.1.18
Eureka! I think I've got it without the blur translation being weird.

The thing I struggled with for hours and hours since early this morning
was trying to �nd an inductive invariant for the asynchronous case that
was an equality between proofs. Such a thing would be nice, but I don't
think it obtains; instead, two back-and-forth lemmas per polarity seems
right.

293

Looking at the content of those lemmas � or rather the converses of
them that do not hold, or aren't inductively strong enough � I see so
clearly the wall I was bashing my head against.

X XL
• XR

•

P (N PR
• (NL

• a 7→ ∀b.UbP
L
•a (NR

•b
P ⊗ P a 7→ ∃b.UbP

L
•a ⊗ PL

•b UFPR
• ⊗ UFPR

•
↑P PL

•? a 7→ UaFP
R
•

↓N a 7→ FaUN
L
• NR

•?

X XL
◦ XR

◦

P (N UFPR
◦ (FUNL

◦ UPL
◦ (UFNR

◦
P ⊗ P UPL

◦ ⊗ FUPL
◦ UFPR

◦ ⊗ UFPR
◦

↑P PL
◦ PR

◦
↓N NL

◦ NR
◦

S A1 A2

- UNL
• = UNL

◦ NR
•? ` UFNR

◦ UaFN
R
◦ ` NR

•a

+ FPR
• = FPR

◦ FUPL
◦ ` PL

•? PL
•a ` FaUP

L
◦

2009.1.19
I want to de�ne a relation a.A ≤ a.B by something sort of like the

conjunction of [?/a]A ` [?/a]B and B ` A, and this has nice properties like
UaFU ≤ Ua and Fa ≤ FaUF , but I can't �gure out the right thing to say
about its commuting with quanti�ers. Tried a couple of generalizations to
contexts rather than one bound variable, but nothing seemed satisfying.

2009.1.20
Taught 312 today, was much harder than I expected.

2009.1.21
I noticed that Simpson-style modal logic is also amenable to a more

Pfenning-Davies style treatment if one only `compiles' it in the same way
I've been compiling HLF down to LF plus one ACU type.

294

Suppose the Simpson-style system looks like

A ::= �A | 3A | A ∧A | A⇒ A | a

and that this is realized by hybrid operators like

A ::= ∀x.A | ∃x.A | A@x | A ∧A | A⇒ A | a

Then all we need to is suppose wlog that our atoms are negative, push all
the @s down to those atoms, call the default modal strength ? and invent
a bunch more for the domain of quanti�cation, and add Ux≤?, and replace
a@p with Up≤?a. Then when it comes time to focus on a negative atom,
we'll throw away all the propositions (including atoms) that aren't at the
right world, and only be satis�ed if we have the same atom at the same
world.

Or I could just doubly index the atoms! That's much simpler.
Any accessibility relation on the atoms is orthogonal to (or at least

supervenient on) any relation of strength on same.
Managing inequalities over some domain might be as easy as treating

them like little implications, if I assume re�exivity and transitivity. I won-
der what happens with fewer demands than that?

2009.1.22
Proving soundness and completeness for deriving entailments of inequal-

ities over atoms in terms of linear implication is fairly easy because then
you don't get a bunch of junk left over in the context complicating your
life.

2009.1.23
Fidgeted with the implementation some more. Got cut elimination to

work for no connectives at all, and it nearly works on just top. The impor-
tant missing piece of the puzzle there seems to be reasoning on equations
like a = X[ξ] ∗ Y [ξ′] where a is not in the range of either ξ or ξ′, both pat-
terns, perhaps? I think it might work even without them being patterns.
Because the point is, there's no way at all of the rhs yielding the parameter
a, so we can fail.

At present it's postponed as a constraint, so we can't see that the E
case of the hyp rule covers when, for example, we have a principal use of
>R in the D slot � doing so requires seeing that the ambient block cases of
hyps don't overlap with requiring that a given hyp being used has a locally
de�ned world, shifted out of range of blocks' worldvars.

2009.1.24
At the meeting yesterday Frank nudged me back towards thinking about

the ordered token-passing protocol where you leave q → p at the left of the

295

context. I tried it very brie�y this morning and couldn't get it to work,
but something about the way that destination passing does work gives me
renewed hope. Too bad the problem of guessing inductive invariants for
these problems is so underconstrained.

Which reminds me � I can do a two-sided translation of Frank and
Deepak's labelled judgmental S4, but then I have to guess the cut prin-
ciple. Contrast diamond, which has a much purer one-sided translation
3 = �(�(p)(p.

2009.1.25
I think it's appropriate to consider a hypersequent calculus to be nonin-

tuitionistic even if it consists of many sequents each one of which is single-
conclusioned, because the hypersequent as a whole still permits many con-
clusions. In such a system possessing � as de�ned by Restall the other day
in his talk, you can still prove ` A ∨ ¬�A, by

(A ` A) | (`)

(` A) | (�A `)

(` A) | (` ¬�A)

` A ∨ ¬�A

so it fails the disjunction property in that sense.

What is a proposition? I want to say: it's a thing that might be true,
(contrast the classical: a thing that is true or false) and for which we know
very clearly and de�nitely the conditions under which we would call it true.

This sounds like the de�nition of a positive connective according to the
strain of thinking Noam subscribes to, and �nally I get a feel for what he
means by de�ned by introduction.

Then again I could say that I mean to apply this intuition to the whole
of a sequent, in which case it would still sort of be on the positive side of
the coin, since I'm talking about an inductively constructed proof-tree.

But there's a funny thing about the game of proof-checking that seems to
fall back to being classical: I actually do want the proof-checking process to
be decidable. A proof is a thing that is or is not valid, and provability is the
constructive projection over all proofs; the thing is proven once a valid proof
comes along, and I make no immediate de�nition of what unprovability
means, and presumably all I admit to believing in is unprovability meaning
that one can positively refute an assumption of provability.

But there I'm getting into hypotheses already! I wish to separate that
out. For what does it mean to hypothesize something that we would oth-

296

erwise prove? Should my heuristic that di�erent judgments typically have
di�erent connectives extend to the notion that assume-true and prove-true
are actually di�erent judgments?

Note that even if this were true, proving cut-elimination for one connec-
tive (or in this other world-view, proving that two connectives are `part-
nered' appropriately) depends on commutative cases for all the rest � so
it is still a slightly non-trivial thing to `be a valid left connective' or `be a
valid right connective' to �t correctly into the larger picture.

Nagging questions:

• Why Cut and Identity?

• Why do arrows in a category have two endpoints, i.e. domain and
codomain, and not more?

2009.1.26
Writing should eliminate unnecessary repetition.

2009.1.27
I cannot say: under any future circumstance, if asked question Q, I will

answer with answer A, because I could imagine a future where I understand
the words of Q and A di�erently. I want to speak of the underlying question
Q but I don't know how.

2009.1.28
Remembered some scraps of thinking about thermo I did years ago.

Suppose one system just has one state for each energy n ∈ N. Then a
collection of k such systems has call it f(k, n) =

(
k+n−1

k−1

)
=
(
k+n−1

n

)
ways

of containing energy n. If I take some other system under scrutiny that has
say sn states for each energy n, then the non-normalized probability I �nd
it in some particular state of energy n when the total energy in the world
is N is f(k,N − n) =

(
k+N−n−1

N−n

)
.

Further suppose N = ak for some average enery a and let k go to ∞.
Does anything coherent happen? I'm staring at(

k + ak − n− 1
ak − n

)
=

(k(a+ 1)− n− 1)!
(ak − n)!(k − 1)!

So let me �rst try to remember how approximate a general binomial
coe�cient with Stirling.(

n

k

)
=

n!
k!(n− k)!

≈
(n
k

)k
(

n

n− k

)n−k√
n

2πk(n− k)

297

Substitute b = a+ 1 and and we want(
bk − n− 1
bk − n− k

)
substitute ` = bk − n− 1 and we want(

`

`− (`+ n+ 1)/b

)
2009.1.29

Neel suggested doing the syntactic focusing proof translation relation-
ally � I thought at �rst it might obviate the asymmetry in the asyn-
chronous reasoning, but then I couldn't get it to work after all.

2009.1.30
Some chords I enjoyed:

E C G D E C G B E C G D F C Bm B
A E G D F C Eb E A E G D F C B B

Talked to Chris a bit after the LF meeting about the `array logic' busi-
ness. She mentioned that the last thing she had thought of under that
name was an ordered arrow that inserted a proposition for instance just to
the left of the right of the context.

This made me think of generalizing the number of how much space a
proposition counted as to something more like a set or list or interval or
other structure of what its extent was supposed to be. For by recording the
size, you're capturing that memory can't grow or shriink, but not that it
can't move around.

The `right but one' arrow I think fundamentally can't work, though; for
it doesn't make any sense for an asychronous operation to insert something
between two items that might be required to be adjacent for the proof to
go through.

However, I could picture a negative modality that as a hypothesis means
�true anywhere to the left (resp. right) of here�. With a bit of polymorphism
it'd be like LA = ∀α.α� A•α (resp. RA = ∀α.α→→ α•A) The synthesized
left and right rules would loook like

α,Ξ ` A rightα

Ξ ` LA

Ω, A,Γ,∆ ` C

Ω,Γ, LA,∆ ` C

plus a `structural rule'
Ξ ` A

Ξ, α ` A rightα

298

This is a little sketchy, since I'm focally `grabbing' stu� that may not be
positive atoms, but let's see if it works anyway. If I want to get the principal
case working then the cut principle I guess might be

Ξ(α) ` A rightα Ω, A,Γ,∆ ` C

Ω,Ξ(Γ),∆ ` C

which does case analysis only on the D slot, waiting for the rule to become
the structural one. When it gets there, we get

Ξ ` A

Ξ, α ` A rightα Ω, A,Γ,∆ ` C

Ω,Ξ,Γ,∆ ` C

which transforms easily.
I sit and think about interactions between the rules → L and LL and

they seem nasty, but I can't seem to �nd a commutative case that acutally
fails.

Alternatively I could imagine `left-mobile' and `right-mobile' judgments,
which would break down the idea that you have separate zones, becuase
they would still require a place in the judgment. To boot they would be ex-
amples of directed structural properties (like weakening, unlike contraction
and exchange).

For we design our logical systems to be snappy ways of doing what would
amount to taking all the ways that we could prove something by applying
weakening or contraction or exchange step-by-step but then imposing proof
irrelevance at the end of the day: for weakening we need only add contexts
at the init rule, and at �R.

2009.1.31
Tried running thesis code on additive conjunction. Still doesn't work,

spews lots of constraints out.

2009.2.1
I think of the three coercions between negative and positive and unre-

stricted hypotheses in HLF, two are actually ↓ and @.

2009.2.2
Here's an idea. Say the judgment form for a focusing system has many

ordered contexts for asychronous positive work, and one may choose any
right-end proposition from one of these to work on. The set of contexts is
itself ordered, so that implication right can unambiguously toss its hypoth-
esis on the rightmost.

299

Perhaps I can write something like Ω/Ω/Ω · · ·Ω or more explicitly

Ω ::= · | Ω/ | ΩA

and have a structural rule that lets me erase an empty ordered context:

Γ;Ω ` P

Γ;Ω/ ` P

and implication right is like

Γ;Ω, P ` N

Γ;Ω ` P ⇒ N

and tensor left might be like

Γ;ΩP1, P2/Ω′ ` J

Γ;ΩP1 ⊗ P2/Ω′ ` J

So here's a stab at the whole system. Structural rules:

Γ; [N] ` J

Γ, N ` J
Γ ` [P]

Γ ` P

Γ;Ω ` J

Γ; /Ω ` J

Shift rules:

Γ ` N

Γ ` [↓N]

Γ; Ω/ ` P

Γ;Ω ` ↑P

Γ, N ; Ω/Ω′ ` J

Γ;Ω, ↓N/Ω′ ` J

Γ;P/ ` J

Γ; [↑P] ` J

Cut principles:

Γ;Ω0 ` P Γ;ΩP/ ` J

Γ;Ω/Ω0 ` J

Γ;Ω0 ` N Γ, N ; Ω ` K

Γ;ΩΩ0 ` K

Γ ` [P] Γ; ΩP/ ` J

Γ;Ω/ ` J

Γ;Ω ` N Γ; [N] ` J

Γ;Ω/ ` J
Principal

Γ;Ω/ ` P

Γ;Ω ` ↑P

Γ;P/ ` J

Γ; [↑P] ` J

Γ;Ω/ ` J
Γ ` N

Γ ` [↓N]

Γ, N ; Ω/ ` J

Γ;Ω↓N/ ` J

Γ;Ω/ ` J

300

This is hard to continue with since I keep re�exively simplifying the
cut principles back down to what's strictly necessary to get the theorem to
go through. But what I really want is a slightly more general form to get
identity, since there I want to cut in things `in the middle of phases'.

Back to positives in HLF, my current set of ideas is

True A ::= @pN
Negative N ::= ↑P | P (N | Πx : A.N
Positive P ::= ↓α.A | P ⊗ P

with some rules and cut principles

Γ ` P [p]

Γ ` ↑P [p]

Γ;P [α] ` J [q]

Γ; ↑P [p] ` J [(p/α)q]

Γ ` P [p] Γ; Ω, P [α] ` J

Γ ` (p/α)J

Γ ` N [p]

Γ ` @pN

Γ;N [p] ` J

Γ,@pN ` J
Γ ` N [p] Γ;N [p] ` J

Γ ` J
Γ ` (p/β)A

Γ ` (↓β.A)[p]

Γ, α : w, (α/β)A; Ω ` J

Γ;Ω, (↓β.A)[α] ` J

2009.2.3
Why don't I have a nice collection of webpages, one per `paper'? This

would allow citations forward in time. Perhaps merely practical issues like
LaTeX in HTML.

So if you include >, sized ordered logic is genuinely di�erent from orered
logic. Consider trying to prove

>1 •B1 • >2 ` >2 •B1 • >1

You can't, but you can if you erase sizes.
Now on the other hand, for any proof in ordered logic, there is some

assignment of sizes to the �nal sequent that respects a given assignment of
sizes to atomic propositions (simply push sizes up through the derivation)
but you're not guaranteed that it's the same sizing as the one you might
have been separately handed for the last sequent if top is involved. If not,
then I think the logic's conservative over ordered logic.

Reading Tsukada and Igarashi's TLCA '09 submission. Great stu�. It's
the paper I wanted Taha and Nielsen '03 (�Environment Classi�ers�) to be.

301

The only thing I notice di�erent between staged computation and full-
on macro systems is the ability of macros to intensionally analyze code. But
perhaps the moral of the story is, if you want to pick stu� apart, use your
own damn positive type to build up a surrogate for the code, and transfer it
over to the negative type of actual compiled code by using staging features
of the language.

Still trying to �gure out what's realling going on with `cross-stage per-
sistence', confusingly (to me) abbreviated CPS because I keep thinking of
continuation-passing style. It seems to be some sort of basic monotonicity
property.

2009.2.4
Looking at James Cheney's NLF work. I like it a lot. The automatic

weakening of names means I really must confront encodings of a�ne things.
It's possibile here that I might get away with it even in relevant HLF if all
functions are additive enough to distribute the context of names around
everywhere. I note that he culls names upon concretion, but he doesn't
split these e�ectively `linear' contexts at (ordinary) function application.

2009.2.5
I had this thought that there must be a common generalization of Levy's

CBPV stu� and the Tskukada and Igarashi work on making Walid Taha's
environment classi�ers actually a logic. Damned if I can �gure out what it
is, though.

The Tsukada-Igarashi λ. system, as much as it makes sense as a logic, is
really confounding me with why its operational system should work the way
it does. For one thing, you always compute underneath Λα. For another,
whether you compute under a λx depends on which level you're at.

I'm tempted to think this means that these are positive somehow, be-
cause despite my best e�orts apparently I have been successfully brain-
washed into thinking that values are symptoms of positive focus.

Two tangential thoughts on this:
One, why is it positive focus, really? Since in ML we ordinarily talk

about closed evaluation, we need not focus on the right; it's just that the
only stu� we can do is on the right, until we come to a lambda. On the
other hand, we're supposed to stop if we get to a lazy pair, too. So maybe
that's convincing.

Two, I can sort of begin to imagine a implication with polarity signa-
ture + → + → + as a macro, inasmuch as I could say (for all positive
propositions)

(A⊕B)⇒ C ∼= (A⇒ C)⊗ (B ⇒ C)

302

(A⊗B)⇒ C ∼= A⇒ (B ⇒ C)

1⇒ C ∼= C

0⇒ C ∼= 1

but then it's much less clear what to do at atoms and at ↓, especially if
I want things too be `compatible with substitution of positive propositions
or positive atoms' whatever that means. I could start by thinking of some
more `exponential identities' like

N ⇒ (A⊗B) ∼= (N ⇒ A)⊗ (N ⇒ B)

N ⇒ 1 ∼= 1

but that only gets me so far, and besides, these aren't valid in linear
logic thinking of⇒ as(, whereas the other group is. Actually, not true for
(A⊕B)⇒ C ∼= (A⇒ C)⊗ (B ⇒ C). I would have wanted an ampersand
there, and likewise really I have 0⇒ C ∼= > and not 1.

I suspect what Noam/Bob/Dan's HOF system would yield is e�ectively

N ⇒ P ∼= ↓(↓N (↑P)

a+ ⇒ P ∼= ↓(a+ (↑P)

2009.2.6
It's perplexing how to realize totality for the decision procedure for

equality of names

eq : name -0 name -0 bool -> @type.
eq/tt : {N :^ name} eq ^ N ^ N tt @ P.
eq/ff : {M :^ name} {N :^ name} eq ^ M ^ N ff @ P.

because it seems to depend on the invariant that the query is at a world
that consists of one unique copy of each world variable in the context.

2009.2.7
Maybe, however, I can de�ne another predicate

in : name -0 @type.
in/ : {N :^ name} in ^ N @ P.

and conclude a conditional e�ectiveness lemma

lemma : in ^ N @ P -> in ^ M @ P
-> {B : bool} eq ^ M ^ N bool @ P -> type.

%mode lemma +INN +INM -BOOL -EQ

303

presumably with the two clauses

lemma/tt : lemma in/ in/ tt eq/tt
lemma/ff : lemma in/ in/ ff eq/ff

2009.2.8
Bad philosophy is atheist theology.

304

