Phase Semantics of Focused ILL

Jason Reed

November 11, 2015

1 Introduction

We show how the phase semantics for intuitionistic linear logic can be refined into a phase semantics for *focused* intuitionistic linear logic. The closure operator in the former arises from the Galois connection between upshift and downshift in the latter.

2 Language

We recall the syntax of focused intuitionistic linear logic. Propositions are polarized into positive and negative. There are shift operators \uparrow and \downarrow that coerce back and forth between the two polarities. Atomic propositions also come in positive a^+ and a^- . Somewhat unusually (but it's just a matter of presentation, not an essential part of the result) we distinguish an atomic proposition a^\pm of either polarity from the suspension $\langle a^\pm \rangle$ of it that arises after asynchronous decomposition terminates at it.

```
\downarrow N \mid P \otimes P \mid P \oplus P \mid 1 \mid 0 \mid a^+
               Positives
                                               \uparrow P \mid P \multimap N \mid N \& N \mid \top \mid a^-
             Negatives
                               N
 Positive Contexts
                               \Omega
                                      ::=
                                               \cdot \mid P, \Omega
Negative Contexts
                               Γ
                                       ::=
                                               \cdot \mid \Gamma, H
Stable Hypotheses
                               H
                                                N \mid \langle a^+ \rangle
                                       ::=
Stable Conclusions
                                                P \mid \langle a^- \rangle
                                       ::=
          Conclusions
                               R
                                               N \mid Q
                                       ::=
```

The three judgments of the logic are

Inversion
$$\Gamma; \Omega \vdash R$$

Right Focus $\Gamma \vdash [P]$
Left Focus $\Gamma[N] \vdash Q$

(we sometimes abbreviate Γ ; $\cdot \vdash R$ as $\Gamma \vdash R$) and the proof rules for the focusing system are in Figure 1.

$$\begin{split} &\frac{\Gamma;P\vdash N}{\Gamma;\cdot\vdash P\multimap N}\multimap R & \frac{\Gamma_1\vdash [P] \quad \Gamma_2[N]\vdash Q}{\Gamma_1,\Gamma_2[P\multimap N]\vdash Q}\multimap L & \frac{\Gamma;\cdot\vdash N_1 \quad \Gamma;\cdot\vdash N_2}{\Gamma;\cdot\vdash N_1 \& N_2} \& R \\ &\frac{\Gamma[N_i]\vdash Q}{\Gamma[N_1 \& N_2]\vdash Q} \& L & \frac{\Gamma_1\vdash [P_1] \quad \Gamma_2\vdash [P_2]}{\Gamma_1,\Gamma_2\vdash [P_1\otimes P_2]} \otimes R & \frac{\Gamma;P_1,P_2,\Omega\vdash R}{\Gamma;P_1\otimes P_2,\Omega\vdash R} \otimes L \\ &\frac{\Gamma\vdash [P_i]}{\Gamma\vdash [P_1\oplus P_2]} \oplus R_i & \frac{\Gamma;P_1,\Omega\vdash R \quad \Gamma;P_2,\Omega\vdash R}{\Gamma;P_1\oplus P_2,\Omega\vdash R} \oplus L & \frac{\Gamma;\cdot\vdash T}{\Gamma;\cdot\vdash T} & \frac{\Delta\vdash [1]}{A\vdash [1]} 1R \\ &\frac{\Gamma;\Omega\vdash R}{\Gamma;1,\Omega\vdash R} 1L & \frac{\Gamma;0,\Omega\vdash R}{\Gamma;0,\Omega\vdash R} 0L & \frac{\Gamma;\cdot\vdash N}{\Gamma\vdash [\downarrow N]} \downarrow R & \frac{\Gamma,N;\Omega\vdash R}{\Gamma;\downarrow N,\Omega\vdash R} \downarrow L & \frac{\Gamma;\cdot\vdash P}{\Gamma;\cdot\vdash \uparrow P} \uparrow R \\ &\frac{\Gamma;P\vdash Q}{\Gamma[\uparrow P]\vdash Q} \uparrow L & \frac{\neg A\vdash R}{\neg A\vdash A\vdash R} & \frac{\Gamma,\langle a^+\rangle;\Omega\vdash R}{\Gamma;a^+,\Omega\vdash R} a^+L & \frac{\Gamma;\cdot\vdash \langle a^-\rangle}{\Gamma;\cdot\vdash a^-} a^-R \\ &\frac{\neg A\vdash P}{\neg A\vdash R} foc R & \frac{\Gamma[N]\vdash Q}{\Gamma;\cdot\vdash Q} foc L \end{split}$$

Figure 1: Focused Linear Logic Proof Rules

3 Semantics

We now interpret this logic in *phase monoid actions*. A phase monoid action is a tuple $(M, X, S, \otimes, 1, \multimap)$ where

- $(M, \otimes, 1)$ is a commutative monoid
- X is a set, and $\multimap: M \times X \to X$ is a monoid action of M on X
- \bullet S is a distinguished subset of X

Given a mapping η of positive atoms a^+ to subsets of M and from negative atoms a^- to subsets of X, we inductively define an interpretation of all positive propositions as subsets of M, and negative propositions as subsets of X.

where \otimes and \multimap are overloaded as set operators in the evident direct-image sort of way, i.e.

$$M_1 \otimes M_2 = \{ p_1 \otimes p_2 \mid p_1 \in M_1, p_2 \in M_2 \}$$

and

$$M' \multimap X' = \{p \multimap n \mid p \in M', n \in X'\}$$

where $M', M_1, M_2 \subseteq M, X' \subseteq X$.

We say $\models P$ if for every phase monoid action, and every interpretation η of atoms in that action, we have $1 \in \llbracket P \rrbracket$.

4 Soundness

Make the following notational conventions:

- $\llbracket Q \rrbracket$ is $\llbracket \uparrow P \rrbracket$ if Q = P, and $\eta(a^-)$ if $Q = \langle a^- \rangle$.
- $\llbracket H \rrbracket$ is $\llbracket \downarrow N \rrbracket$ if H = N, and $\eta(a^+)$ if $H = \langle a^+ \rangle$.
- $\llbracket P_1, \dots, P_n \rrbracket = \llbracket P_1 \rrbracket \otimes \dots \otimes \llbracket P_n \rrbracket$
- $\llbracket H_1, \dots, H_n \rrbracket = \llbracket H_1 \rrbracket \otimes \dots \otimes \llbracket H_n \rrbracket$

Theorem 4.1

- 1. If $\Gamma: \Omega \vdash R$ then $\llbracket \Gamma \rrbracket \otimes \llbracket \Omega \rrbracket \multimap \llbracket R \rrbracket \subseteq S$
- 2. If $\Gamma \vdash [P]$ then $\llbracket \Gamma \rrbracket \subseteq \llbracket P \rrbracket$
- 3. If $\Gamma[N] \vdash Q$ then $\llbracket \Gamma \rrbracket \multimap \llbracket Q \rrbracket \subseteq \llbracket N \rrbracket$

Proof By induction on the proof, unpacking definitions and checking equality in a fairly straightforward way. ■

Corollary 4.2 (Soundness) $If \vdash [P]$, then $\models P$.

Proof By part $2, \vdash [P]$ immediately gives $1 \in \llbracket P \rrbracket$.

5 Completeness

We first recall that the focusing proof system is well-formed; it satisfies cut elimination and an identity principle.

Lemma 5.1 (Cut)

- 1. If $\Gamma_1[N] \vdash Q$ and $\Gamma_2 \vdash N$, then $\Gamma_1, \Gamma_2 \vdash Q$.
- 2. If $\Gamma_1 \vdash [P]$ and $\Gamma_2; P \vdash Q$, then $\Gamma_1, \Gamma_2 \vdash Q$.

Proof Standard structural proof, which we omit; generalize the induction hypothesis slightly to cover commutative cases, and proceed by induction on the cut proposition and derivations.

Lemma 5.2 (Identity)

- 1. $N \vdash N$
- 2. $P \vdash P$
- 3. If $\Gamma_0[N] \vdash Q$ implies $\Gamma_0, \Gamma_{\bullet} \vdash Q$ for every Γ_0 and Q, then $\Gamma_{\bullet} \vdash N$.
- 4. If $\Gamma_0 \vdash [P]$ implies $\Gamma_0, \Gamma_{\bullet}; \Omega \vdash R$ for every Γ_0 , then $\Gamma_{\bullet}; P, \Omega \vdash R$.

Proof Only slightly nonstandard. The important idea is thinking in terms of suspensions as in Simmons's "Structural focalization".

By induction on P and N, and the case of the theorem. To see $N \vdash N$, appeal to part 3 with $\Gamma_{\bullet} = N$, and use rule focL. To see $P \vdash P$, appeal to part 4 with $\Gamma_{\bullet} = \cdot$ and Q = P, and use rule focR.

To show parts 3 and 4, we split cases on N and P:

- Case: $N = P \multimap N_0$. We know that $\Gamma_0[P \multimap N_0] \vdash Q$ implies $\Gamma_0, \Gamma_{\bullet} \vdash Q$ for every Γ_0 and Q. Call this fact (*). We must show $\Gamma_{\bullet} \vdash P \multimap N_0$, and so we try to construct $\Gamma_{\bullet}; P \vdash N_0$. By induction hypothesis, it suffices to show for every Γ_+ that $\Gamma_+ \vdash [P]$ implies $\Gamma_+, \Gamma_{\bullet} \vdash N$. By induction hypothesis on N, it suffices to show that $\Gamma_-[N] \vdash Q$ implies $\Gamma_-, \Gamma_+, \Gamma_{\bullet} \vdash Q$ for every Γ_-, Q . But now that we have $\Gamma_-[N] \vdash Q$ and $\Gamma_+ \vdash [P]$ we can construct $\Gamma_-, \Gamma_+[P \multimap N] \vdash Q$ and conclude $\Gamma_-, \Gamma_+, \Gamma_{\bullet} \vdash Q$ by (*) with $\Gamma_0 = \Gamma_-, \Gamma_+$.
- Case: $P = P_1 \otimes P_2$. We assume that $\Gamma_0 \vdash [P_1 \otimes P_2]$ implies $\Gamma_0, \Gamma_{\bullet}; \Omega \vdash R$ for every Γ_0 . Call this fact (*). We must show $\Gamma_{\bullet}; P_1 \otimes P_2, \Omega \vdash R$, and so we try to construct $\Gamma_{\bullet}; P_1, P_2, \Omega \vdash R$. By induction hypothesis on P_1 , it suffices to show for every Γ_1 that $\Gamma_1 \vdash [P_1]$ implies $\Gamma_1, \Gamma_{\bullet}; P_2, \Omega \vdash R$. By induction hypothesis on P_2 , it suffices to show for every Γ_2 that $\Gamma_2 \vdash [P_2]$ implies $\Gamma_1, \Gamma_2, \Gamma_{\bullet}; \Omega \vdash R$. But at this point, knowing what we know, we can prove $\Gamma_1, \Gamma_2 \vdash [P_1 \otimes P_2]$ and invoke (*) with $\Gamma_0 = \Gamma_1, \Gamma_2$ to obtain $\Gamma_1, \Gamma_2, \Gamma_{\bullet}; \Omega \vdash R$ as required.
- Case: P = 1. We assume that $\Gamma_0 \vdash [1]$ implies $\Gamma_0, \Gamma_{\bullet}; \Omega \vdash R$ for every Γ_0 . In particular $\vdash [1]$ so we have $\Gamma_{\bullet}; \Omega \vdash R$, from which we can derive $\Gamma_{\bullet}; 1, \Omega \vdash R$, as required.
- Case: $P = P_1 \oplus P_2$. We assume that $\Gamma_0 \vdash [P_1 \oplus P_2]$ implies $\Gamma_0, \Gamma_{\bullet}; \Omega \vdash R$ for every Γ_0 . Call this fact (*). We must show $\Gamma_{\bullet}; P_1 \oplus P_2, \Omega \vdash R$, and so we try to construct $\Gamma_{\bullet}; P_i, \Omega \vdash R$ for both $i \in \{1, 2\}$. By induction hypothesis on P_i , it suffices to show for every Γ that $\Gamma \vdash [P_i]$ implies $\Gamma, \Gamma_{\bullet}; \Omega \vdash R$. But having assumed $\Gamma \vdash [P_i]$, we can also show $\Gamma \vdash [P_1 \oplus P_2]$. This lets us apply fact (*) to see $\Gamma, \Gamma_{\bullet}; \Omega \vdash R$ as required.

Case: P = 0. We can trivially prove Γ_{\bullet} ; $0, \Omega \vdash R$.

Case: $N = N_1 \& N_2$. We assume that $\Gamma_0[N_1 \& N_2] \vdash Q$ implies $\Gamma_0, \Gamma_{\bullet} \vdash Q$ for every Γ_0 and Q. Call this fact (*). We must show $\Gamma_{\bullet} \vdash N_1 \& N_2$, and so we try to construct $\Gamma_{\bullet} \vdash N_i$ for both $i \in \{1, 2\}$. By induction hypothesis on N_i , it suffices to show for every Γ, Q' that $\Gamma[N_i] \vdash Q'$ implies $\Gamma, \Gamma_{\bullet} \vdash Q'$. But having assumed $\Gamma[N_i] \vdash Q'$, we can also show $\Gamma[N_1 \& N_2] \vdash Q'$. This lets us apply fact (*) to see $\Gamma, \Gamma_{\bullet} \vdash Q'$ as required.

Case: $N = \top$. We can trivially prove $\Gamma_{\bullet} \vdash \top$.

Case: $N = a^-$. We assume that $\Gamma_0[a^-] \vdash Q$ implies $\Gamma_0, \Gamma_{\bullet} \vdash Q$ for every Γ_0 and Q. In particular $[a^-] \vdash \langle a^- \rangle$ so we have $\Gamma_{\bullet} \vdash \langle a^- \rangle$, from which we can derive $\Gamma_{\bullet} \vdash a^-$, as required.

Case: $P = a^+$. We assume that $\Gamma_0 \vdash [a^+]$ implies $\Gamma_0, \Gamma_{\bullet}; \Omega \vdash R$ for every Γ_0 . In particular $\langle a^+ \rangle \vdash [a^+]$ so we have $\Gamma_{\bullet}, \langle a^+ \rangle; \Omega \vdash R$, from which we can derive $\Gamma_{\bullet}; a^+, \Omega \vdash R$, as required.

Case: $N = \uparrow P$. We assume that $\Gamma_0[\uparrow P] \vdash Q$ implies $\Gamma_0, \Gamma_{\bullet} \vdash Q$ for every Γ_0 and Q. By induction hypothesis $P \vdash P$, so also $[\uparrow P] \vdash P$, hence $\Gamma_{\bullet} \vdash P$, from which we can derive $\Gamma_{\bullet} \vdash \uparrow P$, as required.

Case: $P = \downarrow N$. We assume that $\Gamma_0 \vdash [\downarrow N]$ implies $\Gamma_0, \Gamma_{\bullet}; \Omega \vdash R$ for every Γ_0 . By induction hypothesis $N \vdash N$ so also $N \vdash [\downarrow N]$, hence $\Gamma_{\bullet}, N; \Omega \vdash R$, from which we can derive $\Gamma_{\bullet}; \downarrow N, \Omega \vdash R$, as required.

Theorem 5.3 (Completeness) $If \models P \ then \vdash P$.

Proof We build a universal model. Let M be the set of all negative contexts Γ , with \otimes being multiset union and 1 being the empty context. Let X be the set of all pairs (Γ, Q) . The context monoid M acts on X by concatenating onto the context: $\Gamma_1 \multimap (\Gamma_2, Q) = ((\Gamma_1, \Gamma_2), Q)$. The set S is $\{(\Gamma, Q) \in X \mid \Gamma \vdash Q\}$.

We choose as interpretations of the atoms $\eta(a^+) = \{\Gamma | \langle a^+ \rangle \in \Gamma \}$ and $\eta(a^-) = \{(\Gamma, \langle a^- \rangle) | \forall \Gamma \}$ The main lemma is showing that this model is in fact universal — that the interpretation of every proposition reflects its (focused) provability. We claim that for all P and N we have

- $\bullet \ \llbracket P \rrbracket = \{ \Gamma \, | \, \Gamma \vdash [P] \}$
- $\bullet \ \llbracket N \rrbracket = \{ (\Gamma, Q) \, | \, \Gamma[N] \vdash Q \}$

Clearly this suffices for the theorem, since if $\models P$ then $1 \in \{\Gamma \mid \Gamma \vdash [P]\}$ means $\vdash [P]$ and therefore $\vdash P$. We proceed by induction on the structure of P or N. Most of the cases are extremely easy:

Case: $P = a^+$. By inspection of the proof rules, $\{\Gamma \mid \Gamma \vdash [a^+]\}$ is those Γ that already include $\langle a^+ \rangle$ as an element, which is just what we chose $\eta(a^+)$ to be.

Case: $P = a^-$. Similarly, by inspection of the proof rules, $\{(\Gamma, Q) \mid \Gamma[a^-] \vdash Q\}$ demands that $Q = \langle a^- \rangle$ and puts no restriction on Γ , just as we did when defining $\eta(a^-)$.

Case: P = 0. There are no Γ that have $\Gamma \vdash \llbracket 0 \rrbracket$ and $\llbracket 0 \rrbracket$ is empty.

Case: $N = \top$. There are no Γ, Q that have $\Gamma[\top] \vdash Q$ and $\llbracket \top \rrbracket$ is empty.

Case: $P = P_1 \oplus P_2$. By i.h. we know

$$\llbracket P_i \rrbracket = \{ \Gamma \, | \, \Gamma \vdash [P_i] \}$$

and furthermore

$$\{\Gamma \mid \Gamma \vdash [P_1 \oplus P_2]\} = \{\Gamma \mid \Gamma \vdash [P_1]\} \cup \{\Gamma \mid \Gamma \vdash [P_2]\}$$

by inspection of the proof rules, so we are done.

Case: $N = N_1 \& N_2$. By i.h. we know

$$\llbracket N_i \rrbracket = \{ \Gamma, Q \, | \, \Gamma[N_i] \vdash Q \}$$

and furthermore

$$\{\Gamma, Q \mid \Gamma[N_1 \& N_2] \vdash Q\} = \{\Gamma, Q \mid \Gamma[N_1] \vdash Q\} \cup \{\Gamma, Q \mid \Gamma[N_2] \vdash Q\}$$

by inspection of the proof rules, so we are done.

Case: $N = P \multimap N_0$. By i.h. we know

$$\llbracket P \rrbracket = \{ \Gamma_1 \, | \, \Gamma_1 \vdash [P] \}$$

 $[\![N_0]\!] = \{\Gamma_2, Q \,|\, \Gamma_2[N_0] \vdash Q\}$

so we can reason that

$$\begin{split} & \{\Gamma, Q \,|\, \Gamma[P \multimap N_0] \vdash Q \} \\ & = \{(\Gamma_1, \Gamma_2), Q \,|\, \Gamma_1 \vdash [P] \land \Gamma_2[N_0] \vdash Q \} \\ & = \{(\Gamma_1, \Gamma_2), Q \,|\, \Gamma_1 \in [\![P]\!] \land (\Gamma_2, Q) \in [\![N_0]\!] \} \\ & = [\![P \multimap N_0]\!] \end{split}$$

Case: $P = P_1 \otimes P_2$. By i.h. we know

$$\llbracket P_i \rrbracket = \{ \Gamma_i \, | \, \Gamma_i \vdash [P_i] \}$$

so we can reason that

$$\{\Gamma \mid \Gamma \vdash [P_1 \otimes P_2]\}$$

$$= \{(\Gamma_1, \Gamma_2) \mid \Gamma_1 \vdash [P_1] \land \Gamma_2 \vdash [P_2]\}$$

$$= \{(\Gamma_1, \Gamma_2) \mid \Gamma_1 \in [\![P_1]\!] \land \Gamma_2 \in [\![P_2]\!]\}$$

$$= [\![P_1 \otimes P_2]\!]$$

Case: P = 1. The only context that proves 1 in focus is the empty context which we chose as the monoid unit, so $[1] = \{1\}$ is as required.

The remaining cases are the shifts, which are dealt with by appealing to harmony:

Case: $P = \downarrow N$. Here we have to show that $[\![\downarrow N]\!] = \{\Gamma \mid \Gamma \vdash [\downarrow N]\}$, in other words that

$$\{\Gamma_1 \mid \forall (\Gamma_2, Q) \in \llbracket N \rrbracket . \Gamma_1, \Gamma_2 \vdash Q\} = \{\Gamma \mid \Gamma \vdash N\}$$

By induction hypothesis, this is the same as showing that

$$\{\Gamma_1 \mid \forall (\Gamma_2, Q).\Gamma_2[N] \vdash Q \Rightarrow \Gamma_1, \Gamma_2 \vdash Q\} = \{\Gamma_1 \mid \Gamma_1 \vdash N\}$$

To see \supseteq , use cut, and to see \subseteq , use identity.

Case: $N = \uparrow P$. Here we have to show that $\llbracket \uparrow P \rrbracket = \{\Gamma, Q \mid \Gamma[\uparrow P] \vdash Q\}$, in other words that

$$\{\Gamma_1, Q \mid \forall \Gamma_2 \in \llbracket P \rrbracket . \Gamma_1, \Gamma_2 \vdash Q\} = \{\Gamma, Q \mid \Gamma; P \vdash Q\}$$

By induction hypothesis, this is the same as showing that

$$\{\Gamma_1, Q \mid \forall \Gamma_2.\Gamma_2 \vdash [P] \Rightarrow \Gamma_1, \Gamma_2 \vdash Q\} = \{\Gamma_1, Q \mid \Gamma_1; P \vdash Q\}$$

To see \supseteq , use cut, and to see \subseteq , use identity.