
Categorical Semantics of Focused ILL

Jason Reed

November 30, 2017

1 Introduction

I want to describe a certain categorical semantics of focused intuitionistic linear
logic so that I can better understand how it relates to other semantics I’ve seen
in the literature [HS07].

2 Language

We recall the syntax of focused intuitionistic linear logic, leaving out exponen-
tials for now. Propositions are polarized into positive and negative. There are
shift operators ↑ and ↓ that coerce back and forth between the two polarities.
Atomic propositions also come in positive a+ and a−. Somewhat unusually (but
it’s just a matter of presentation, not an essential part of the result) we distin-
guish an atomic proposition a± of either polarity from the suspension 〈a±〉 of
it that arises after asynchronous decomposition terminates at it.

Positives P ::= ↓N | P ⊗ P | P ⊕ P | 1 | 0 | a+

Negatives N ::= ↑P | P ( N | N & N | > | a−
Positive Contexts Ω ::= · | P,Ω

Negative Contexts Γ ::= · | Γ, H
Stable Hypotheses H ::= N | 〈a+〉
Stable Conclusions Q ::= P | 〈a−〉

Conclusions R ::= N | Q

The three judgments of the logic are

Inversion Γ; Ω ` R
Right Focus Γ ` [P ]

Left Focus Γ[N ] ` Q

(we sometimes abbreviate Γ; · ` R as Γ ` R) and the proof rules for the focusing
system are in Figure 1.
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Γ;P ` N
(R

Γ; · ` P ( N

Γ1 ` [P ] Γ2[N ] ` Q
(L

Γ1,Γ2[P ( N ] ` Q

Γ; · ` N1 Γ; · ` N2

&R
Γ; · ` N1 & N2

Γ[Ni] ` Q
&L

Γ[N1 & N2] ` Q

Γ1 ` [P1] Γ2 ` [P2]
⊗R

Γ1,Γ2 ` [P1 ⊗ P2]

Γ;P1, P2,Ω ` R
⊗L

Γ;P1 ⊗ P2,Ω ` R

Γ ` [Pi]
⊕Ri

Γ ` [P1 ⊕ P2]

Γ;P1,Ω ` R Γ;P2,Ω ` R
⊕L

Γ;P1 ⊕ P2,Ω ` R

>R
Γ; · ` >

1R
· ` [1]

Γ; Ω ` R
1L

Γ; 1,Ω ` R

0L
Γ; 0,Ω ` R

Γ; · ` N
↓R

Γ ` [↓N ]

Γ, N ; Ω ` R
↓L

Γ; ↓N,Ω ` R

Γ; · ` P
↑R

Γ; · ` ↑P

Γ;P ` Q
↑L

Γ[↑P ] ` Q

a+R
〈a+〉 ` [a+]

Γ, 〈a+〉; Ω ` R
a+L

Γ; a+,Ω ` R

Γ; · ` 〈a−〉
a−R

Γ; · ` a−

a−L
[a−] ` 〈a−〉

Γ ` [P ]
focR

Γ; · ` P

Γ[N ] ` Q
focL

Γ, N ; · ` Q

Figure 1: Focused Linear Logic Proof Rules

2.1 Results

These are thoroughly standard.

Lemma 2.1 (Cut)

1. If Γ1[N ] ` Q and Γ2 ` N , then Γ1,Γ2 ` Q.

2. If Γ1 ` [P ] and Γ2;P ` Q, then Γ1,Γ2 ` Q.

Lemma 2.2 (Identity)

1. N ` N

2. P ` P

3. If Γ0[N ] ` Q implies Γ0,Γ ` Q for every Γ0 and Q, then Γ ` N .

4. If Γ0 ` [P ] implies Γ0,Γ; Ω ` R for every Γ0, then Γ;P,Ω ` R.

3 Semantics

In what follows we write Ĉ as an abbreviation for C → Set, despite the usual
contravariant convention.

A model M consists of the following data:

2



X ∈ P̂ Y ∈ N̂

X (̂ Y :=

∫ α:P,φ:N

X(α)× Y (φ)×N(α( φ,—)

X ∈ P̂ Y ∈ P̂

X ⊗̂ Y :=

∫ α1:P,α2:P

X(α1)× Y (α2)×P(α1 ⊗ α2,—)

Figure 2: Semantic Operations

1. a symmetric monoidal category (P,⊗, I) and a category N

2. functors ( : P×N→ N and . : P×N→ Set

3. a natural isomorphism

k :
(P1 ⊗ P2) . N
============
P1 . (P2 ( N)

4. a mapping η of atoms a+ (resp. a−) to objects of P̂ (resp. N̂)

We inductively define an interpretation of all positive (resp. negative) propo-

sitions P (resp. N) as objects [[P ]]M ∈ P̂ (resp. [[N ]]M ∈ N̂). We write [[—]]
instead of [[—]]M when the M is evident from context. The definition of the
interpretation is given in Figure 3, where + denotes the (objectwise) coproduct
and ∅ the initial object, in the category P̂ or N̂ as appropriate. The arrow→ in
the definition of the shifts is just the function space in Set. The multiplicative
connectives are defined with coends, using the operators (̂ and ⊗̂ defined in
Figure 2. Shifts are defined with ends.

To interpret sequents, do as follows. If X : Ĉ and Y : D̂, define their

objectwise product X ∧ Y : Ĉ×D as (X ∧ Y )(C,D) = X(C)× Y (D).
We say

1. Γ; Ω |=M R iff there is a nat. trans. ([[Γ]] ⊗̂ [[Ω]]) ∧ [[R]]> →̇ .

2. Γ |=M [P ] iff there is a nat. trans. [[Γ]] →̇ [[P ]]

3. Γ[N ] |=M Q iff there is a nat. trans. ([[Γ]] (̂ [[Q]]>) →̇ [[N ]]

When we drop the subscripts M and just write |=, it means that the statement
holds for all M .

4 Results

Lemma 4.1 ⊗̂ is associative.
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[[a±]] = η(a±) [[1]] = P(I,—)

[[P1 ⊕ P2]] = [[P1]] + [[P2]] [[0]] = ∅

[[N1 & N2]] = [[N1]] + [[N2]] [[>]] = ∅

[[P ( N ]] = [[P ]] (̂ [[N ]]

[[P1 ⊗ P2]] = [[P1]] ⊗̂ [[P2]]

[[↑P ]] =

∫
α:P

[[P ]](α)→ (α .—)

[[↓N ]] =

∫
φ:N

[[N ]](φ)→ (— . φ)

Γ = H1, . . . ,Hn

[[Γ]] = [[H1]]< ⊗̂ · · · ⊗̂ [[Hn]]<

Ω = P1, . . . , Pn

[[Ω]] = [[P1]]< ⊗̂ · · · ⊗̂ [[Pn]]<

[[P ]]< = [[P ]] [[N ]]< = [[↓N ]] [[〈a+〉]]< = η(a+)

[[N ]]> = [[N ]] [[P ]]> = [[↑P ]] [[〈a−〉]]> = η(a−)

Figure 3: Interpreting Propositions

Proof

(X ⊗̂ (Y ⊗̂ Z))(ε) ∼=

(
X ⊗̂

∫ β,γ:P

Y (β)× Z(γ)×P(β ⊗ γ,—)

)
(ε)

∼=
∫ α,δ:P

X(α)×

(∫ β,γ:P

Y (β)× Z(γ)×P(β ⊗ γ, δ)

)
×P(α⊗ δ, ε)

∼=
∫ α,β,δ,γ:P

X(α)× Y (β)× Z(γ)×P(α⊗ δ, ε)×P(β ⊗ γ, δ)

∼=
∫ α,β,δ:P

X(α)× Y (β)× Z(γ)×
∫ δ:P

P(α⊗ δ, ε)×P(β ⊗ γ, δ)

∼=
∫ α,β,γ:P

X(α)× Y (β)× Z(γ)×P(α⊗ β ⊗ γ, ε)

and we can show symmetrically that

(X ⊗̂ Y ) ⊗̂ Z ∼=
∫ α,β,γ:P

X(α)× Y (β)× Z(γ)×P(α⊗ β ⊗ γ,—)
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Theorem 4.2 (Soundness)

1. If Γ; Ω ` R then Γ; Ω |= R

2. If Γ ` [P ] then Γ |= [P ]

3. If Γ[N ] ` Q then Γ[N ] |= Q

Proof By induction on the derivation. Some example cases:

Case:
Γ;P ` Q

Γ[↑P ] ` Q
We assume a natural transformation

ζ : ([[Γ]] (̂ [[Q]]>) →̇ [[↑P ]]

and need to produce a natural transformation

ξ : ([[Γ]] ⊗̂ [[P ]]) ∧ [[Q]]> →̇ .

Expanding definitions, we have

ζψ :

(∫ α:P,φ:N

[[Γ]](α)× [[Q]]>(φ)×N(α( φ, ψ)

)
→̇

∫
β:P

[[P ]](β)→ (β . ψ)

and we need

ξα,φ :

(∫ α1:P,α2:P

[[Γ]](α1)× [[P ]](α2)×P(α1 ⊗ α2, α)

)
×[[Q]]>(φ)→ (α.φ)

So let

γ : [[Γ]](α1) p : [[P ]](α2) g : P(α1 ⊗ α2, α) q : [[Q]]>(φ)

be given. Then we have

ζα1(φ(γ, q, idα1(φ)(p) : α2 . (α1 ( φ)

By k, this is as good as (α1 ⊗ α2) . φ, and we apply functoriality of . to
g and we’re done.

Case:
Γ ` [P ]

Γ ` P
We assume a natural transformation ζ : [[Γ]] →̇ [[P ]] : P → Set, and need
to produce a natural transformation ξ : [[Γ]] ∧ [[↑P ]] →̇ . : P×N→ Set.
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For an object (α, φ) of P×N, the arrow ξ(α,φ) must be a function

[[Γ]](α)×
(∫

α:P

[[P ]](α)→ (α . φ)

)
→ (α . φ)

Note that for any object α : P there is a projection function out of the
end

πα :

(∫
α:P

[[P ]](α)→ (α . φ)

)
→ [[P ]](α)→ (α . φ)

So we set
ξ(α,φ) = λ(γ, e).πα(e)(ζα(γ))

Case:
Γ1 ` [P1] Γ2 ` [P1]

Γ1,Γ2 ` [P1 ⊗ P2]

We assume natural transformations ζ1 : [[Γ1]] →̇ [[P1]] and ζ2 : [[Γ2]] →̇ [[P2]],
and we need to produce

ξ : [[Γ1]] ⊗̂ [[Γ2]] →̇ [[P1 ⊗ P2]]

In other words

ξβ :

∫ α1,α2:P

[[Γ1]](α1)× [[Γ2]](α2)×P(α1 ⊗ α2, β) →̇

∫ α1,α2:P

[[P1]](α1)× [[P2]](α2)×P(α1 ⊗ α2, β)

This is easily constructed out of ζ1 and ζ2 and idP(—⊗—,β).

Case:
Γ;P1, P2 ` Q

Γ;P1 ⊗ P2 ` Q
We have a natural transformation

[[Γ]] ⊗̂ [[P1]] ⊗̂ [[P2]] ⊗̂ [[↑Q]] →̇ .

and need to produce

[[Γ]] ⊗̂ [[P1 ⊗ P2]] ⊗̂ [[↑Q]] →̇ .

which is essentially the same thing, by associativity of ⊗̂.
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4.1 Completeness

We build a syntactic model. Fix a collection of atoms.

• Let P be the category whose objects are all contexts Γ, and whose mor-
phisms are permutations. The functor ⊗ is context concatenation, and
the monoidal unit I is the empty context.

• Let N be the category whose objects are pairs (Γ, Q) and whose morphisms
are context permutations. The functor ( takes an object Γ1 of P and an
object (Γ2, Q) of N and produces ((Γ1,Γ2), Q) in N.

• The functor . takes an object Γ1 of P and an object (Γ2, Q) of N and
yields the set of derivations Γ1,Γ2 ` Q.

• k is easy to check by simply constructing proofs and using cut.

• We choose as interpretations of the atoms as follows

η(a+)(Γ) =

{
{∗} if Γ = (〈a+〉);
∅ otherwise.

η(a−)(Γ, Q) =

{
{∗} if (Γ, Q) = (·, 〈a−〉);
∅ otherwise.

The thing we need to do is show that this model is in fact universal — that
the interpretation of every proposition reflects its (focused) provability. We first
claim that

Lemma 4.3 In the syntactic model, for all P and N we have

• If [[P ]](Γ), then Γ ` [P ]

• If [[N ]](Γ, Q), then Γ[N ] ` Q

Proof This proceeds by induction on the proposition. For the atoms, the defi-
nition of η makes this immediately true.

Note that because the categories P and N are groupoids, taking (co)ends
over them is the same as taking mere (co)products over their connected com-
ponents, for example ∫ Γ:P

F (Γ,Γ) =
∐
Γ:P

F (Γ,Γ)

where the
∐

is understood as ranging over contexts identified up to permutation.
Other cases:

Case: P1 ⊗ P2. If [[P1 ⊗ P2]](Γ) is inhabited, then by definition∐
Γ1,Γ2:P

[[P1]](Γ1)× [[P1]](Γ2)×P((Γ1,Γ2),Γ)

is inhabited. By i.h., we have Γ1 ` [P1] and Γ2 ` [P2], so Γ1,Γ2 ` [P1⊗P2]
as required.

7



Case: ↓N . Suppose [[↓N ]](Γ) is inhabited. By definition,∏
(Γ0,Q):N

[[N ]](Γ0, Q)→ Γ . (Γ0, Q)

is inhabited. By Lemma 2.2 and soundness, we have Γ ` N .

Lemma 4.4 In the syntactic model,

1. [[↓N ]](N) is inhabited.

2. [[↑P ]](·, P ) is inhabited.

3. [[Γ]](Γ) is inhabited.

4. ([[Γ]] (̂ [[Q]]>)(Γ, Q) is inhabited.

Proof Follows easily from Lemma 2.2.

Lemma 4.5 In the syntactic model,

1. If ([[Γ]] ⊗̂ [[Ω]]) ∧ [[R]]> →̇ ., then Γ; Ω ` R.

2. If [[Γ]] →̇ [[P ]], then Γ ` [P ].

3. If ([[Γ]] (̂ [[Q]]>) →̇ [[N ]], then Γ[N ] ` Q.

Proof Combine Lemmas 4.4 and 4.3.

Corollary 4.6 (Completeness)

1. If Γ; Ω |= R then Γ; Ω ` R

2. If Γ |= [P ] then Γ ` [P ]

3. If Γ[N ] |= Q then Γ[N ] ` Q
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