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1 Introduction

I want to describe a certain categorical semantics of focused intuitionistic linear
logic so that I can better understand how it relates to other semantics I've seen
in the literature [HS07].

2 Language

We recall the syntax of focused intuitionistic linear logic, leaving out exponen-
tials for now. Propositions are polarized into positive and negative. There are
shift operators T and | that coerce back and forth between the two polarities.
Atomic propositions also come in positive a™ and a~. Somewhat unusually (but
it’s just a matter of presentation, not an essential part of the result) we distin-
guish an atomic proposition a® of either polarity from the suspension (a*) of
it that arises after asynchronous decomposition terminates at it.

Positives P u= |N|P®P|P®&P|1|0]a*
Negatives N 1= tP|P—-oN|N&N|T|a"
Positive Contexts = -|PQ
Negative Contexts I’ = -|TH
Stable Hypotheses H == N |{a™)
Stable Conclusions @ == P {a™)
Conclusions R == N|Q

The three judgments of the logic are

Inversion I';QF R
Right Focus T+ [P]
Left Focus T[N]+F Q

(we sometimes abbreviate I'; - - R as I' = R) and the proof rules for the focusing
system are in Figure 1.
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Figure 1: Focused Linear Logic Proof Rules
2.1 Results

These are thoroughly standard.

Lemma 2.1 (Cut)
1. IfTY[N]F Q and To F N, then T'1, T3 - Q.
2. IfT1F [Pl andT9; PF Q, then T, Ty - Q.
Lemma 2.2 (Identity)
1. NFN
2. P-P
3. If Ty[N] F Q implies T, T+ Q for every Ty and Q, then T+ N.
4. If Do F [P] implies Ty, T;Q + R for every Ty, then T; P,Q + R.

3 Semantics

In what follows we write C as an abbreviation for C — Set, despite the usual
contravariant convention.
A model M consists of the following data:



XeP YeN

a:P,¢p:N
ngy::/ X(a) x Y(¢) x N(a — ¢, )

XeP YebP

R al:P,OtQZP
X®Y::/ X(a1) x Y(ag) x P(a; ® ag,—)

Figure 2: Semantic Operations

1. a symmetric monoidal category (P, ®,I) and a category N
2. functors . — _: P XN —- N and _>_: P x N — Set
3. a natural isomorphism
(P ®P)> N
P> (P — N)

4. a mapping 7 of atoms a® (resp. a~) to objects of P (resp. N)

We inductively define an interpretation of all positive (resp. negative) propo-
sitions P (resp. N) as objects [P]a € P (vesp. [N]a € N). We write []
instead of [—]a when the M is evident from context. The definition of the
interpretation is given in Figure 3, where + denotes the (objectwise) coproduct
and @ the initial object, in the category P or N as appropriate. The arrow — in
the definition of the shifts is just the function space in Set. The multiplicative
connectives are defined with coends, using the operators —o and & defined in
Figure 2. Shifts are defined with ends.

To interpret sequents, do as follows. If X : C and Y : ]f)7 define their
objectwise product X AY : C x D as (X AY)(C, D) = X(C) x V(D).

We say

1. T;Q |=ar R iff there is a nat. trans. ([I] ® [Q]) A [R]” = >
2. T =) [P] iff there is a nat. trans. [I'] = [P]
3. T[N] Eun Q iff there is a nat. trans. ([I'] o [Q]”) = [N]

When we drop the subscripts M and just write |=, it means that the statement
holds for all M.

4 Results

Lemma 4.1 ® s associative.
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[PreR]=[A]+[R] [0]=0
[Ni& No] =[]+ [N2]  [T] =0
[P — N] = [P] — [N]

[P ® P] = [P1] & [P]
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Figure 3: Interpreting Propositions

Proof

B,v:P

(X ® (Y ®2)(e)= (X ®/ Y(8) x Z(7) x P(ﬂ®%)> (€)

a,0:P B,y:P
~ | xwmx</ YW%XﬂwxPW®%&>xPM®&@

«a,B,6,v:P
= | X(a) % Y(8) x Z(7) x P(a ©8,) x P(8©7,0)

o,8,5:P 5P
%/ X(a)xY(ﬂ)xZ(’y)x/ Pla®d,e) x P(B®%,0)

a,B,v:P
= [ X(@x Y(9) x 20) x Pla® 5 97.2)

and we can show symmetrically that

o,B3,v:P
(X®Y)®Z%/ X(a) x Y(B) x Z(7) x Pla® B &, —)



Theorem 4.2 (Soundness)
1. IfT;QF R thenT;Q E R
2. If T+ [P] then T | [P]
3. IfT[N]FQ then T[N] E Q
Proof By induction on the derivation. Some example cases:

Case:
IPEQ

I[P Q
We assume a natural transformation
(Ml = [QI7) = [1P]
and need to produce a natural transformation
¢ ([l e [P AIQ) = >

Expanding definitions, we have

a:P,p:N
Gy : (/ [T](a) x [Q]7 (¢) x N(ax — ¢, ¢)> -

[ 1716) > 6o0)
B:P

and we need

a1:P,az:P
S (/ [C1(a1) x [P](cr2) x P(on ® az,a)> <[Q]” (¢) — (ar¢)

So let
vi[Fl(e1)  p:[Plla2) g:Plar®az,a)  q:[Q7(¢)
be given. Then we have

Car (715G 1da; ) (P) : 2 > (a1 — @)

By k, this is as good as (a1 ® ag) > ¢, and we apply functoriality of > to
g and we’re done.

Case:
'+ [P]

'kP

We assume a natural transformation ¢ : [I'] = [P] : P — Set, and need
to produce a natural transformation & : [I'] A [tP] = > : P x N — Set.




For an object (a,¢) of P x N, the arrow {4, ) must be a function

[M)(a) x (/Q:P[[P]](a) = <a>¢>) S (v d)

Note that for any object « : P there is a projection function out of the
end

mos ([ 1Pl (@20)) > 1PI(@) = (a5 0

So we set
é(a,qﬁ) = /\(77 6).7Ta(6)(<a(’y))

Case:
Iy [Py] Iy - [Py]

'y, Te =[P ® P

We assume natural transformations ¢; : [I'1] = [P1] and (s : [T2] = [P2],
and we need to produce

£:[M] & [T2] = [P @ P

In other words

aq,a9:P
€ / [T1](a1) % [Cal(az) x P(on ® ag, B) =

a,a2:P
/ [[Pl]](al) X HPQH(@Q) X P(Oll ® 012,6)

This is easily constructed out of (1 and (3 and idp(—g— g)-

Case:
PP EQ

PP EQ

We have a natural transformation
[[] & [A] & [P2] © [1Q] = »
and need to produce
[[]& [P ® P] & [1Q] = >

which is essentially the same thing, by associativity of &.



4.1 Completeness
We build a syntactic model. Fix a collection of atoms.

e Let P be the category whose objects are all contexts I', and whose mor-
phisms are permutations. The functor ® is context concatenation, and
the monoidal unit I is the empty context.

e Let N be the category whose objects are pairs (', Q) and whose morphisms
are context permutations. The functor —o takes an object I'; of P and an
object (T'2, Q) of N and produces ((I'1,I'3), Q) in N.

e The functor > takes an object I'y of P and an object (I'2,@) of N and
yields the set of derivations I'1,I's F Q.

e [k is easy to check by simply constructing proofs and using cut.

e We choose as interpretations of the atoms as follows

n(a™)(T) = {é*} if I' = ({(a™));

otherwise.

n(a )T, Q) = {é} i (1,Q) = (- (a));

otherwise.

The thing we need to do is show that this model is in fact universal — that
the interpretation of every proposition reflects its (focused) provability. We first
claim that

Lemma 4.3 In the syntactic model, for all P and N we have
o If[P](T), then T\ [P]
o If[N](T,Q), then T[N] F Q

Proof This proceeds by induction on the proposition. For the atoms, the defi-
nition of 7 makes this immediately true.

Note that because the categories P and N are groupoids, taking (co)ends
over them is the same as taking mere (co)products over their connected com-

ponents, for example
P

F@O,T) =[] F@.T)
r:P
where the ] is understood as ranging over contexts identified up to permutation.
Other cases:
Case: Py ® P. If [P ® P5](T) is inhabited, then by definition
[T [AI@) x [P](Ts) x P((Ty,T5),T)
Fl,FQZP

is inhabited. By i.h., we have T'; F [P1] and T's F [P2], s0 T'1,T's F [P @ Py)
as required.



Case: |N. Suppose [{N](T) is inhabited. By definition,

II [INM(T0.Q) = Te (T Q)

(F0,Q):N
is inhabited. By Lemma 2.2 and soundness, we have I' - N.
]
Lemma 4.4 In the syntactic model,
1. [IN](N) is inhabited.
2. [TP](-, P) is inhabited.
3. [T](T) is inhabited.
4. ([T] = [Q]”)(T, Q) is inhabited.

Proof Follows easily from Lemma 2.2. m

Lemma 4.5 In the syntactic model,

1. If (0] @ [Q]) A [R]” = &, then T;Q F R.

2. If [T] = [P], then Tk [P].

3. If ([T] == [Q]>) = [N], then T[N] F Q.
Proof Combine Lemmas 4.4 and 4.3. =
Corollary 4.6 (Completeness)

1. IfT;Q = R thenT;QF R

2. IfT E[P] then T F [P]

3. IfT[N] = Q then T[N] - Q
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