Categorical Semantics of Focused ILL

Jason Reed

November 30, 2017

1 Introduction

I want to describe a certain categorical semantics of focused intuitionistic linear logic so that I can better understand how it relates to other semantics I've seen in the literature [HS07].

2 Language

We recall the syntax of focused intuitionistic linear logic, leaving out exponentials for now. Propositions are polarized into positive and negative. There are shift operators \uparrow and \downarrow that coerce back and forth between the two polarities. Atomic propositions also come in positive a^+ and a^- . Somewhat unusually (but it's just a matter of presentation, not an essential part of the result) we distinguish an atomic proposition a^{\pm} of either polarity from the suspension $\langle a^{\pm} \rangle$ of it that arises after asynchronous decomposition terminates at it.

Positives	P	$::=$	$\downarrow N \mid P \otimes P \mid P \oplus P \mid 1 \mid 0 \mid a^+$
Negative	N	$::=$	$\uparrow P \mid P \multimap N \mid N \& N \mid \top \mid a^-$
Positive Contests	Ω	$::=$	$\cdot \mid P, \Omega$
Negative Contests	Γ	$::=$	$\cdot \mid \Gamma, H$
Stable Hypotheses	H	$::=$	$N \mid \langle a^+ \rangle$
Stable Conclusions	Q	$::=$	$P \mid \langle a^- \rangle$
Conclusions	R	$::=$	$N \mid Q$

The three judgments of the logic are

Inversion
$$
\Gamma; \Omega \vdash R
$$

Right Focus $\Gamma \vdash [P]$
Left Focus $\Gamma[N] \vdash Q$

(we sometimes abbreviate Γ ; $\vdash R$ as $\Gamma \vdash R$) and the proof rules for the focusing system are in Figure 1.

$$
\frac{\Gamma; P \vdash N}{\Gamma; \cdot \vdash P \multimap N} \multimap R \qquad \frac{\Gamma_1 \vdash [P] \quad \Gamma_2[N] \vdash Q}{\Gamma_1, \Gamma_2[P \multimap N] \vdash Q} \multimap L \qquad \frac{\Gamma; \cdot \vdash N_1 \quad \Gamma; \cdot \vdash N_2}{\Gamma; \cdot \vdash N_1 \& N_2} \& R
$$
\n
$$
\frac{\Gamma[N_i] \vdash Q}{\Gamma[N_1 \& N_2] \vdash Q} \& L \qquad \frac{\Gamma_1 \vdash [P_1] \quad \Gamma_2 \vdash [P_2]}{\Gamma_1, \Gamma_2 \vdash [P_1 \otimes P_2]} \otimes R \qquad \frac{\Gamma; P_1, P_2, \Omega \vdash R}{\Gamma; P_1 \otimes P_2, \Omega \vdash R} \otimes L
$$
\n
$$
\frac{\Gamma \vdash [P_i]}{\Gamma \vdash [P_1 \oplus P_2]} \oplus R_i \qquad \frac{\Gamma; P_1, \Omega \vdash R \quad \Gamma; P_2, \Omega \vdash R}{\Gamma; P_1 \oplus P_2, \Omega \vdash R} \oplus L \qquad \frac{\Gamma; \cdot \vdash N}{\Gamma; \cdot \vdash \top} \uparrow R \qquad \frac{\Gamma; \cdot \vdash P}{\vdash [1]} \uparrow R
$$
\n
$$
\frac{\Gamma; \Omega \vdash R}{\Gamma; 1, \Omega \vdash R} \uparrow L \qquad \frac{\Gamma; \cdot \vdash N}{\Gamma; 0, \Omega \vdash R} \downarrow R \qquad \frac{\Gamma; N; \Omega \vdash R}{\Gamma; \downarrow N; \Omega \vdash R} \downarrow L \qquad \frac{\Gamma; \cdot \vdash P}{\Gamma; \cdot \vdash \uparrow P} \uparrow R
$$
\n
$$
\frac{\Gamma; P \vdash Q}{\Gamma[\uparrow P] \vdash Q} \uparrow L \qquad \frac{\Gamma}{\langle a^+ \rangle \vdash [a^+]} \, a^+ R \qquad \frac{\Gamma, \langle a^+ \rangle; \Omega \vdash R}{\Gamma; a^+, \Omega \vdash R} \, a^+ L \qquad \frac{\Gamma; \cdot \vdash \langle a^- \rangle}{\Gamma; \cdot \vdash a^-} \, a^- R
$$
\n
$$
\frac{\Gamma[N] \vdash Q}{\Gamma[a^-] \vdash \langle a^- \rangle} \, a^- L \qquad \frac{\Gamma \vd
$$

2.1 Results

These are thoroughly standard.

Lemma 2.1 (Cut)

- 1. If $\Gamma_1[N] \vdash Q$ and $\Gamma_2 \vdash N$, then $\Gamma_1, \Gamma_2 \vdash Q$.
- 2. If $\Gamma_1 \vdash [P]$ and Γ_2 ; $P \vdash Q$, then $\Gamma_1, \Gamma_2 \vdash Q$.

Lemma 2.2 (Identity)

- 1. $N \vdash N$
- 2. $P \vdash P$
- 3. If $\Gamma_0[N] \vdash Q$ implies $\Gamma_0, \Gamma \vdash Q$ for every Γ_0 and Q , then $\Gamma \vdash N$.
- 4. If $\Gamma_0 \vdash [P]$ implies $\Gamma_0, \Gamma; \Omega \vdash R$ for every Γ_0 , then $\Gamma; P, \Omega \vdash R$.

3 Semantics

In what follows we write \hat{C} as an abbreviation for $C \rightarrow$ **Set**, despite the usual contravariant convention.

A model M consists of the following data:

$$
X \in \hat{\mathbf{P}} \qquad Y \in \hat{\mathbf{N}}
$$
\n
$$
X \hat{-\alpha} Y := \int^{\alpha : \mathbf{P}, \phi : \mathbf{N}} X(\alpha) \times Y(\phi) \times \mathbf{N}(\alpha - \phi, -)
$$
\n
$$
X \hat{\otimes} Y := \int^{\alpha_1 : \mathbf{P}, \alpha_2 : \mathbf{P}} X(\alpha_1) \times Y(\alpha_2) \times \mathbf{P}(\alpha_1 \otimes \alpha_2, -)
$$
\n
$$
\text{Figure 2: Semantic Operations}
$$

- 1. a symmetric monoidal category (\mathbf{P}, \otimes, I) and a category N
- 2. functors $\Box \neg \circ \Box : P \times N \to N$ and $\Box \triangleright \Box : P \times N \to Set$
- 3. a natural isomorphism

$$
k: \frac{(P_1 \otimes P_2) \triangleright N}{P_1 \triangleright (P_2 \multimap N)}
$$

4. a mapping η of atoms a^+ (resp. a^-) to objects of $\hat{\mathbf{P}}$ (resp. $\hat{\mathbf{N}}$)

We inductively define an interpretation of all positive (resp. negative) propositions P (resp. N) as objects $[P]_M \in \hat{P}$ (resp. $[N]_M \in \hat{N}$). We write $[-]$ instead of $[-]_M$ when the M is evident from context. The definition of the interpretation is given in Figure 3, where $+$ denotes the (objectwise) coproduct and \emptyset the initial object, in the category \hat{P} or \hat{N} as appropriate. The arrow \rightarrow in the definition of the shifts is just the function space in Set. The multiplicative connectives are defined with coends, using the operators $\hat{\phi}$ and $\hat{\otimes}$ defined in Figure 2. Shifts are defined with ends.

To interpret sequents, do as follows. If $X : \hat{C}$ and $Y : \hat{D}$, define their objectwise product $X \wedge Y : \widetilde{C} \times \widetilde{D}$ as $(X \wedge Y)(C, D) = X(C) \times Y(D)$.

We say

- 1. $\Gamma; \Omega \models_M R$ iff there is a nat. trans. $(\llbracket \Gamma \rrbracket \hat{\otimes} \llbracket \Omega \rrbracket) \wedge \llbracket R \rrbracket^> \rightarrow \triangleright$
- 2. $\Gamma \models_M [P]$ iff there is a nat. trans. $\llbracket \Gamma \rrbracket \rightarrow \llbracket P \rrbracket$
- 3. $\Gamma[N] \models_M Q$ iff there is a nat. trans. $([\![\Gamma]\!] \xrightarrow{\sim} [\![Q]\!]^> \rightarrow [\![N]\!]$

When we drop the subscripts M and just write \models , it means that the statement holds for all M.

4 Results

Lemma 4.1 $\hat{\otimes}$ is associative.

$$
[\![a^{\pm}]\!] = \eta(a^{\pm}) \qquad [\![1]\!] = \mathbf{P}(I, -)
$$

$$
[\![P_1 \oplus P_2]\!] = [\![P_1]\!] + [\![P_2]\!] \qquad [\![0]\!] = \emptyset
$$

$$
[\![N_1 \& N_2]\!] = [\![N_1]\!] + [\![N_2]\!] \qquad [\![\top]\!] = \emptyset
$$

$$
[\![P \to N]\!] = [\![P]\!] \stackrel{\frown}{\sim} [\![N]\!]
$$

$$
[\![P_1 \otimes P_2]\!] = [\![P_1]\!] \stackrel{\frown}{\otimes} [\![P_2]\!]
$$

$$
[\![\uparrow P]\!] = \int_{\alpha : \mathbf{P}} [\![P]\!](\alpha) \to (\alpha \triangleright -)
$$

$$
[\![\downarrow N]\!] = \int_{\phi : \mathbf{N}} [\![N]\!](\phi) \to (- \triangleright \phi)
$$

$$
\Gamma = H_1, \dots, H_n \qquad \Omega = P_1, \dots, P_n
$$

$$
[\![\Gamma]\!] = [\![H_1]\!]^{\leq} \otimes \dots \otimes [\![H_n]\!]^{\leq} \qquad [\![\Omega]\!] = [\![P_1]\!]^{\leq} \otimes \dots \otimes [\![P_n]\!]^{\leq}
$$

$$
[\![P]\!]^{\leq} = [\![P]\!] \qquad [\![N]\!]^{\leq} = [\![\downarrow N]\!] \qquad [\![\langle a^+\rangle]\!]^{\leq} = \eta(a^+)
$$

$$
[\![N]\!]^{\geq} = [\![N]\!] \qquad [\![P]\!]^{\geq} = [\![\uparrow P]\!] \qquad [\![\langle a^-\rangle]\!]^{\geq} = \eta(a^-)
$$

$$
\text{Figure 3: Interpreting Propositions}
$$

Proof

 \blacksquare

$$
(X \hat{\otimes} (Y \hat{\otimes} Z))(\varepsilon) \cong \left(X \hat{\otimes} \int^{\beta, \gamma : \mathbf{P}} Y(\beta) \times Z(\gamma) \times \mathbf{P}(\beta \otimes \gamma, -)\right)(\varepsilon)
$$

$$
\cong \int^{\alpha, \delta : \mathbf{P}} X(\alpha) \times \left(\int^{\beta, \gamma : \mathbf{P}} Y(\beta) \times Z(\gamma) \times \mathbf{P}(\beta \otimes \gamma, \delta)\right) \times \mathbf{P}(\alpha \otimes \delta, \varepsilon)
$$

$$
\cong \int^{\alpha, \beta, \delta, \gamma : \mathbf{P}} X(\alpha) \times Y(\beta) \times Z(\gamma) \times \mathbf{P}(\alpha \otimes \delta, \varepsilon) \times \mathbf{P}(\beta \otimes \gamma, \delta)
$$

$$
\cong \int^{\alpha, \beta, \delta : \mathbf{P}} X(\alpha) \times Y(\beta) \times Z(\gamma) \times \int^{\delta : \mathbf{P}} \mathbf{P}(\alpha \otimes \delta, \varepsilon) \times \mathbf{P}(\beta \otimes \gamma, \delta)
$$

$$
\cong \int^{\alpha, \beta, \gamma : \mathbf{P}} X(\alpha) \times Y(\beta) \times Z(\gamma) \times \mathbf{P}(\alpha \otimes \delta, \varepsilon) \times \mathbf{P}(\beta \otimes \gamma, \delta)
$$

and we can show symmetrically that

$$
(X \hat{\otimes} Y) \hat{\otimes} Z \cong \int^{\alpha,\beta,\gamma:\mathbf{P}} X(\alpha) \times Y(\beta) \times Z(\gamma) \times \mathbf{P}(\alpha \otimes \beta \otimes \gamma, -)
$$

Theorem 4.2 (Soundness)

- 1. If $\Gamma; \Omega \vdash R$ then $\Gamma; \Omega \models R$
- 2. If $\Gamma \vdash [P]$ then $\Gamma \models [P]$
- 3. If $\Gamma[N] \vdash Q$ then $\Gamma[N] \models Q$

Proof By induction on the derivation. Some example cases:

Case:

$$
\frac{\Gamma;P\vdash Q}{\Gamma[\uparrow P]\vdash Q}
$$

We assume a natural transformation

$$
\zeta:([\![\Gamma]\!]\!\stackrel{\widehat\cdot}{\multimap}[\![Q]\!]^>\!)\;\dot\to[\![\uparrow P]\!]
$$

and need to produce a natural transformation

$$
\xi: \left(\llbracket \Gamma \rrbracket \, \hat{\otimes} \, \llbracket P \rrbracket \right) \wedge \llbracket Q \rrbracket^> \stackrel{\cdot}{\to} \vartriangleright
$$

Expanding definitions, we have

$$
\zeta_{\psi} : \left(\int^{\alpha : \mathbf{P}, \phi : \mathbf{N}} [\![\Gamma]\!](\alpha) \times [\![Q]\!]^> (\phi) \times \mathbf{N}(\alpha \multimap \phi, \psi) \right) \to
$$

$$
\int_{\beta : \mathbf{P}} [\![P]\!](\beta) \to (\beta \triangleright \psi)
$$

and we need

$$
\xi_{\alpha,\phi} : \left(\int^{\alpha_1 : \mathbf{P},\alpha_2 : \mathbf{P}} \llbracket \Gamma \rrbracket(\alpha_1) \times \llbracket P \rrbracket(\alpha_2) \times \mathbf{P}(\alpha_1 \otimes \alpha_2, \alpha) \right) \times \llbracket Q \rrbracket^>(\phi) \to (\alpha \triangleright \phi)
$$

So let

$$
\gamma : [\![\Gamma]\!](\alpha_1) \qquad p : [\![P]\!](\alpha_2) \qquad g : \mathbf{P}(\alpha_1 \otimes \alpha_2, \alpha) \qquad q : [\![Q]\!]^>(\phi)
$$

be given. Then we have

$$
\zeta_{\alpha_1 \cdots \alpha_\phi}(\gamma, q, \mathrm{id}_{\alpha_1 \cdots \alpha_\phi})(p) : \alpha_2 \triangleright (\alpha_1 \multimap \phi)
$$

By k, this is as good as $(\alpha_1 \otimes \alpha_2) \triangleright \phi$, and we apply functoriality of \triangleright to g and we're done.

Case:

$$
\frac{\Gamma \vdash [P]}{\Gamma \vdash P}
$$

We assume a natural transformation $\zeta : [\![\Gamma]\!] \to [\![P]\!] : \mathbf{P} \to \mathbf{Set}$, and need to produce a natural transformation $\xi : \[\Gamma]\] \wedge \[\uparrow P]\] \rightarrow \triangleright : \mathbf{P} \times \mathbf{N} \rightarrow \mathbf{Set}.$

For an object (α, ϕ) of $\mathbf{P} \times \mathbf{N}$, the arrow $\xi_{(\alpha, \phi)}$ must be a function

$$
\llbracket \Gamma \rrbracket(\alpha) \times \left(\int_{\alpha : \mathbf{P}} \llbracket P \rrbracket(\alpha) \to (\alpha \triangleright \phi) \right) \to (\alpha \triangleright \phi)
$$

Note that for any object α : **P** there is a projection function out of the end \overline{z}

$$
\pi_{\alpha} : \left(\int_{\alpha : \mathbf{P}} \llbracket P \rrbracket(\alpha) \to (\alpha \triangleright \phi) \right) \to \llbracket P \rrbracket(\alpha) \to (\alpha \triangleright \phi)
$$

So we set

$$
\xi_{(\alpha,\phi)} = \lambda(\gamma,e).\pi_{\alpha}(e)(\zeta_{\alpha}(\gamma))
$$

Case:

$$
\frac{\Gamma_1 \vdash [P_1] \qquad \Gamma_2 \vdash [P_1]}{\Gamma_1, \Gamma_2 \vdash [P_1 \otimes P_2]}
$$

We assume natural transformations $\zeta_1 : [\![\Gamma_1]\!] \to [\![P_1]\!]$ and $\zeta_2 : [\![\Gamma_2]\!] \to [\![P_2]\!]$, and we need to produce

$$
\xi : \llbracket \Gamma_1 \rrbracket \hat{\otimes} \llbracket \Gamma_2 \rrbracket \stackrel{\cdot}{\rightarrow} \llbracket P_1 \otimes P_2 \rrbracket
$$

In other words

$$
\xi_{\beta} : \int^{\alpha_1, \alpha_2 : \mathbf{P}} [\![\Gamma_1]\!](\alpha_1) \times [\![\Gamma_2]\!](\alpha_2) \times \mathbf{P}(\alpha_1 \otimes \alpha_2, \beta) \to
$$

$$
\int^{\alpha_1, \alpha_2 : \mathbf{P}} [\![P_1]\!](\alpha_1) \times [\![P_2]\!](\alpha_2) \times \mathbf{P}(\alpha_1 \otimes \alpha_2, \beta)
$$

This is easily constructed out of ζ_1 and ζ_2 and $\mathsf{id}_{\mathbf{P}(\text{---},\beta)}$.

Case:

$$
\frac{\Gamma; P_1, P_2 \vdash Q}{\Gamma; P_1 \otimes P_2 \vdash Q}
$$

We have a natural transformation

$$
[\![\Gamma]\!] \hat{\otimes} [\![P_1]\!] \hat{\otimes} [\![P_2]\!] \hat{\otimes} [\![\uparrow Q]\!] \rightarrow \vartriangleright
$$

and need to produce

$$
[\![\Gamma]\!] \mathbin{\hat{\otimes}} [\![P_1 \otimes P_2]\!] \mathbin{\hat{\otimes}} [\![\uparrow Q]\!] \rightarrow \vartriangleright
$$

which is essentially the same thing, by associativity of $\hat{\otimes}.$

 \blacksquare

4.1 Completeness

We build a syntactic model. Fix a collection of atoms.

- Let **P** be the category whose objects are all contexts Γ, and whose morphisms are permutations. The functor ⊗ is context concatenation, and the monoidal unit I is the empty context.
- Let N be the category whose objects are pairs (Γ, Q) and whose morphisms are context permutations. The functor \multimap takes an object Γ_1 of **P** and an object (Γ_2, Q) of **N** and produces $((\Gamma_1, \Gamma_2), Q)$ in **N**.
- The functor \triangleright takes an object Γ_1 of **P** and an object (Γ_2, Q) of **N** and yields the set of derivations $\Gamma_1, \Gamma_2 \vdash Q$.
- k is easy to check by simply constructing proofs and using cut.
- We choose as interpretations of the atoms as follows

$$
\eta(a^+)(\Gamma) = \begin{cases} \{*\} & \text{if } \Gamma = (\langle a^+ \rangle); \\ \emptyset & \text{otherwise.} \end{cases}
$$

$$
\eta(a^-)(\Gamma, Q) = \begin{cases} \{*\} & \text{if } (\Gamma, Q) = (\cdot, \langle a^- \rangle); \\ \emptyset & \text{otherwise.} \end{cases}
$$

The thing we need to do is show that this model is in fact universal — that the interpretation of every proposition reflects its (focused) provability. We first claim that

Lemma 4.3 In the syntactic model, for all P and N we have

- If $[P](\Gamma)$, then $\Gamma \vdash [P]$
- If $[N](\Gamma, Q)$, then $\Gamma[N] \vdash Q$

Proof This proceeds by induction on the proposition. For the atoms, the definition of η makes this immediately true.

Note that because the categories P and N are groupoids, taking (co)ends over them is the same as taking mere (co)products over their connected components, for example

$$
\int^{\Gamma:\mathbf{P}} F(\Gamma,\Gamma) = \coprod_{\Gamma:\mathbf{P}} F(\Gamma,\Gamma)
$$

where the \prod is understood as ranging over contexts identified up to permutation. Other cases:

Case: $P_1 \otimes P_2$. If $[\![P_1 \otimes P_2]\!] (\Gamma)$ is inhabited, then by definition

$$
\underset{\Gamma_1,\Gamma_2:\mathbf{P}}{\coprod} [P_1](\Gamma_1)\times [P_1](\Gamma_2)\times \mathbf{P}((\Gamma_1,\Gamma_2),\Gamma)
$$

is inhabited. By i.h., we have $\Gamma_1 \vdash [P_1]$ and $\Gamma_2 \vdash [P_2]$, so $\Gamma_1, \Gamma_2 \vdash [P_1 \otimes P_2]$ as required.

Case: \downarrow N. Suppose $\llbracket \downarrow N \rrbracket(\Gamma)$ is inhabited. By definition,

$$
\prod_{(\Gamma_0, Q): \mathbf{N}} [\![N]\!](\Gamma_0, Q) \to \Gamma \triangleright (\Gamma_0, Q)
$$

is inhabited. By Lemma 2.2 and soundness, we have $\Gamma \vdash N$.

Lemma 4.4 In the syntactic model,

- 1. $\llbracket \downarrow N \rrbracket(N)$ is inhabited.
- 2. $\llbracket \uparrow P \rrbracket(\cdot, P)$ is inhabited.
- 3. $\llbracket \Gamma \rrbracket(\Gamma)$ is inhabited.
- 4. $([\![\Gamma]\!] \triangleq [\![Q]\!]^>)(\Gamma, Q)$ is inhabited.

Proof Follows easily from Lemma 2.2. \blacksquare

Lemma 4.5 In the syntactic model,

1. If $(\llbracket \Gamma \rrbracket \hat{\otimes} \llbracket \Omega \rrbracket) \wedge \llbracket R \rrbracket^> \rightarrow \triangleright, \text{ then } \Gamma; \Omega \vdash R.$ 2. If $\llbracket \Gamma \rrbracket \overset{\cdot}{\rightarrow} \llbracket P \rrbracket$, then $\Gamma \vdash [P]$. 3. If $(\llbracket \Gamma \rrbracket \stackrel{\frown}{\neg} \llbracket Q \rrbracket^>) \stackrel{\frown}{\to} \llbracket N \rrbracket$, then $\Gamma[N] \vdash Q$.

Proof Combine Lemmas 4.4 and 4.3. ■

Corollary 4.6 (Completeness)

- 1. If $\Gamma; \Omega \models R$ then $\Gamma; \Omega \vdash R$
- 2. If $\Gamma \models [P]$ then $\Gamma \vdash [P]$
- 3. If $\Gamma[N] \models Q$ then $\Gamma[N] \vdash Q$

References

[HS07] Masahiro Hamano and Philip Scott. A categorical semantics for polarized MALL. Annals of Pure and Applied Logic, 145(3):276 – 313, 2007.