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Abstract

We present a method of embedding substructural log-
ics into ordinary first-order intuitionistic logic. This em-
bedding is faithful in a very strong sense: not only does
it preserve provability of sequents under translation, but it
also preserves sets of proofs — and the focusing structure
of those proofs — up to isomorphism. Examples are given
for the cases of intuitionistic linear logic and ordered logic,
and indeed we can use our method to derive a correct fo-
cusing system for ordered logic. Potential applications lie
in logic programming, theorem proving, and logical frame-
works for substructural logics where focusing is crucial for
the underlying proof theory.

1 Introduction

Substructural logics can enforce restrictions on use of
hypotheses by having a structured context: hypotheses in
linear logic [Gir87], where the context is a multiset, must
be used exactly once, and in ordered logic [Lam58, Pol01]
are used in a specified order, because the context is a list. In
the same vein as display logic [Bel82] and work on graphi-
cal representations of structured contexts [Lam07], we show
how diverse substructural logics can be treated uniformly
by isolating the reasoning about the algebraic properties of
their context’s structure. Unlike these other approaches,
we do so without introducing a logic that itself has a so-
phisticated notion of structured context, and instead use fo-
cused proofs [And92] in a very simple nonsubstructural
logic. This reduction of substructural to nonsubstructural
has proved useful in understanding the design of substruc-
tural (especially dependent) type theories. We specifically
show how to embed substructural logics into in a fragment
of focused first-order intuitionistic logic with equality, over
a signature of function symbols suited to the substructural
logic being embedded.

The embedding can be viewed as a constructive resource
interpretation of substructural logics, where the first-order
domain provides the notion of resources. Because the proof

system of the target language is limited, and compatible
with focusing, we are able to formulate and prove much
stronger claims about the faithfulness of our embedding
than can usually be obtained for standard resource seman-
tics into classical algebraic structures. Not only does prov-
ability coincide with provability across the embedding, but
proofs correspond bijectively to proofs, and focusing phases
to focusing phases.

Focusing is deeply connected to notions of uniform proof
for logic programming, to the analysis of canonical forms in
dependently-typed logical frameworks, and to efficient au-
tomated proof search procedures. By showing how to relo-
cate the problem of understanding focusing systems of sub-
structural logics to the setting of a simpler and more easily
understood calculus, we open the door to more (and more
convenient) application of the expressivity of substructural
logics in all of these areas.

The rest of the paper is organized toward the aim of
treating two examples of the embedding, intuitionistic lin-
ear logic (Section 3) and ordered logic (Section 4), but we
must first describe the representation language into which
they will be embedded (Section 2). We finish with a discus-
sion of related work (Section 5) and conclusions about our
contribution (Section 6).

2 The Logic of FF

Our representation language is FF, for Focused First-
order intuitionistic logic. We refer in the sequel to the sub-
structural logic being embedded as the object language.

The notion of focusing, introduced by Andreoli [And92],
is a way of narrowing eligible proofs down to those that de-
compose connectives in maximal contiguous runs of logical
connectives of the same polarity. Polarity is a trait of propo-
sitional connectives which, among other properties, charac-
terizes whether they can be eagerly decomposed as goals
(negative propositions) or eagerly decomposed as assump-
tions (positive propositions). Importantly, focused proof
search is complete: there is a focused proof of a proposition
iff there is an ordinary proof, but there are generally fewer
distinct focused proofs. It is by using the tight control over
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proof search and proof identity that focusing affords that we
are able to faithfully mimic not only of which propositions
are provable the object language, but how they are proved.

FF is a multi-sorted first-order logic, and is parametrized
over the structure of its first-order domain: we leave it open
for each particular embedding to choose a collection of
sorts, which function symbols exist to build terms of those
sorts, and how an equivalence relation ≡ on those terms is
axiomatized.

In the embedding, first-order terms serve to describe the
shape of sequents with substructural contexts. The relation
≡ is used to express that two sequent shapes are considered
equivalent. For instance, in the case linear logic, it captures
the property that the order of hypotheses does not matter.

2.1 Syntax

The basic syntax of FF is as follows.

Negative Props A ::= B ⇒ A | A ∧ A | > | ∀x:σ.A | s−
Positive Props B ::= s+ | ↓A

Contexts Γ ::= · | Γ, B
Sorts σ ::= · · ·
Terms t ::= x | · · ·

The bulk of the propositions are built of negative log-
ical connectives: implication, conjunction, truth, univer-
sal quantification, and negative atomic propositions s−.
Atomic propositions, both positive and negative (hereafter
sometimes ‘atoms’), are generally predicates on first-order
terms. We leave it again to the particular embedding to de-
cide which atoms (i.e. which predicates) exist in the lan-
guage, and of which polarity. The first argument to implica-
tion is, as usual for focusing systems, a positive proposition.
Ordinarily the positives might include existential quantifi-
cation and disjunction, but for our purposes we only need
positive atoms s+, and an inclusion of negative propositions
back into positives, via the shift connective ↓ that interrupts
focus phases.

Contexts Γ are built out of positive propositions, and are
subject to tacit weakening, contraction, and exchange.

The judgments of the system are:

Right Focus Γ ` [B]
Left Focus Γ; [A] ` s−

Right Inversion Γ ` A

We will also use the defined judgment of equivalence
s−1 ≡ s−2 of negative atoms, which is defined to mean that
s−1 and s−2 have the same predicate symbol, and each of the
corresponding pairs of term arguments are related by ≡.

The focus judgments are used when we have selected a
proposition and have committed to continue decomposing

it until we reach a polarity shift. Inversion takes place when
we are trying to prove a negative proposition, and we ap-
ply right rules eagerly, because all right rules for negative
propositions are characteristically invertible.

For uniformity, we write Γ ` J to stand for either
Γ; [A] ` s− or Γ ` A. On occasion, when we need to con-
trast the judgment of FF with that of the object language,
decorate the turnstile as `FF.

2.2 Proof Theory

The valid deductions of this judgment are defined by the
inference rules in Figure 1. They are mostly standard, but
we note some consequences of focusing discipline: when
we are focused on a negative atomic proposition s−, the cur-
rent conclusion s−0 must be already equivalent to s−; when
focused on a positive atom s+, that same atom must already
be found in the current context. Encountering ↓A on the
right blurs focus, and begins inversion of A. Decomposing
↓ on the left begins a focus phase, which is only allowed
once the conclusion has finished inversion, and arrived at a
negative atomic proposition s−.

The right rule for the quantifier is understood to have
the usual side conditions about the freshness of variable it
introduces. We write {t/x} for substitution of a first-order
term for the variable x. By ` t : σ we mean that t is a well-
formed term of sort σ; for space reasons we avoid giving a
complete explanation of this rather standard notion. We will
write f : (σ1, . . . , σn) → σ to indicate that f is a function
symbol taking n arguments of sorts σ1, . . . , σn and yielding
a term of sort σ.

2.3 Metatheory

This calculus satisfies the usual pair of properties that es-
tablish its internal soundness (cut admissibility) and internal
completeness (identity expansion). Because of the equiva-
lence relation allowed at negative atoms, we must first show
a congruence lemma with respect to the relation.

Lemma 2.1 (Congruence) Suppose s− ≡ s−0 .

1. If Γ ` s−, then Γ ` s−0

2. If Γ; [A] ` s−, then Γ; [A] ` s−0

Proof By induction on the derivation. Use transitivity for
the case of s−L.

The admissibility of cut now follows.

Theorem 2.2 (Cut Admissibility) The following rules are
admissible:

Γ ` [B] Γ, B ` J

Γ ` J

Γ ` A Γ, ↓A ` J

Γ ` J
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s+R
Γ, s+ ` [s+]

s−1 ≡ s−2
s−L

Γ; [s−1 ] ` s−2

Γ ` A
↓R

Γ ` [↓A]

Γ, ↓A; [A] ` s−

↓L
Γ, ↓A ` s−

Γ ` A1 Γ ` A2
∧R

Γ ` A1 ∧ A2

Γ; [Ai] ` s−

∧Li
Γ; [A1 ∧ A2] ` s−

>R
Γ ` >

Γ, B ` A
⇒R

Γ ` B ⇒ A

Γ ` [B] Γ; [A] ` s−

⇒L
Γ; [B ⇒ A] ` s−

Γ ` A
∀Rx

Γ ` ∀x:σ.A

` t : σ Γ; [{t/x}A] ` s−

∀L
Γ; [∀x:σ.A] ` s−

Figure 1. FF Inference Rules

Γ ` A Γ; [A] ` s−

Γ ` s−

Proof By a standard structural cut admissibility proof, us-
ing lexicographic induction on the cut formula B or A and
the derivations involved. In the first rule, if B is an atom
we are done, by the admissibility of contraction. Otherwise
analyze the second premise. In the second rule, split cases
on the premise Γ ` A. In the third rule, both premises are
analyzed in lockstep; when A is a negative atom, use the
above congruence lemma.

We can also obtain the result that shows every proposition
(not just any atomic proposition) entails itself:

Theorem 2.3 (Identity Expansion) For all Γ, A,B, we
have Γ, ↓A ` A and Γ, B ` [B].

Proof See appendix.

3 Embedding Linear Logic

In this section we show how to embed focused intuition-
istic linear logic into FF in a proof-preserving way. We will
then obtain that ordinary unfocused linear logic can also be
embedded; we need only apply the usual insertion of shift
connectives in a way that focused proof search on the result
simulates proof search on the original proposition.

Although embeddings of classical calculi into FF are
also certainly possible, all of the examples herein are em-
beddings of intuitionistic systems, and we refer simply to
‘linear logic’ throughout and understand it to mean the in-
tuitionistic variety.

The language of focused linear logic,1 just as in FF, has
polarized propositions, negative and positive, with polarity
shift connectives ↑ and ↓ passing between them. Their syn-
tax is as follows.

Negative N ::= ↑P | N & N | > | P ( N | a−
Positive P ::= ↓N | P ⊗P | 1 | P ⊕ P | 0 | a+ | !N

Now to instantiate FF, we first choose a set of sorts, and
function symbols to inhabit them. We will have three sorts,

Sorts σ ::= world | frame | struct

1[we should probably reference something here, like the work on po-
larized linear logic... -fp]

to classify worlds, frames, and structures, with function
symbols ∗ : (world,world) → world, ε : () → world, and
/ : (frame,world) → struct. If we write the binary opera-
tions infix, and write α for world variables and φ for frame
variables (we will have no need for structure variables) this
can equivalently be seen as the declaration of syntax

Worlds p ::= α | ε | p ∗ p
Frames f ::= φ | f ~ p

Structures r ::= f / p

Having made these conventions for variable names will let
us elide sort declarations from uses of ∀ in the sequel. We
must also choose what the atomic propositions are, and do
so as follows: take negative atoms s− to be exactly the
structures f / p, (or rather, posit a single one-place predi-
cate on structures, but it is convenient to write it, as it were,
with the empty predicate symbol) and positive atoms s+ to
be either a−@f or a+@p. These are just pairs, where one
element is an object-language negative or positive atomic
proposition a− or a+, and the other element is a frame or
world, respectively.

Finally we must define an equivalence relation on first-
order terms, and so we take as axioms the following

ε ∗ p ≡ p p ∗ q ≡ q ∗ p

p ∗ (q ∗ r) ≡ (p ∗ q) ∗ r (f ~ p) / q ≡ f / (p ∗ q)

plus symmetry, reflexivity, and transitivity of≡, and all con-
gruence laws as expected; for example, p ∗ q ≡ p′ ∗ q′ when
p ≡ p′ and q ≡ q′.

Let us make a few comments to foreshadow the role of
these three sorts of terms in the embedding. A world ex-
pression is used to represent the structure of a linear con-
text. The empty world ε corresponds to the empty context,
∗ corresponds to the ability to take the multiset union of two
contexts, and world variables α will label individual linear
resources in the context. Since ∗ was made commutative
and associative, and to satisfy unit laws with respect to ε,
world expressions do behave like linear contexts.

The role of frames is less immediately intuitive: a frame
represents the shape of a sequent with one hypothesis re-
moved. In fact, this notion is in a sense dual to worlds,
which are the shape of a sequent with one conclusion (of
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which there is only one!) removed. The need for frames
arises from the need to represent decomposition (in the ob-
ject language) of a positive hypothesis, such as P 1 ⊗ P 2,
that may leave behind a collection of new hypotheses in the
context. We represent the act of choosing such a proposi-
tion to be decomposed by choice of a partition of the entire
sequent into the proposition being focused on (a world vari-
able) and the remainder of the sequent (a frame). This is
particularly important in the case of ordered logic below,
where the location of a hypothesis in the context matters —
then the frame keeps track of which other hypotheses were
to the left and to the right of the chosen proposition, and
determine where the results of focus affect the context after
decomposition.

The operation ~ builds up frame expressions, by adjoin-
ing more hypotheses to the context part of a frame. The
above axiom for ≡ involving ~ expresses a kind of asso-
ciativity among ~, /, ∗. Frame variables, dual to the way
world variables label linear hypotheses, are used to label
object language conclusions. Again, since our setting is in-
tuitionistic, there is only one conclusion at a time, but it will
still be important that different conclusions appearing in the
same proof receive different labels.

Finally, a structure f / p represents the shape of an entire
sequent, where we may imagine the context represented by
p being substituted into the hole of the frame f .

3.1 Focused Linear Logic

We now describe the object language of focused linear
logic [And92, LM09]. We follow dual intuitionistic linear
logic [BP96] in having two separate contexts of linear hy-
potheses from a context of ordinary unrestricted hypothe-
ses, a choice which goes back to Andreoli [And92] who
explicitly relates a dyadic system of classical linear logic to
a focused system for classical linear logic. Furthermore,
for the inversion phases of focusing we need an ordered
context of positive propositions to ensure that asynchronous
(i.e. positive) hypotheses are decomposed in a deterministic
order. The syntax of contexts and conclusions is:

Left Stable N̄ ::= N | a+

Right Stable P̄ ::= P | a−
Linear Contexts ∆ ::= · | ∆, N̄

Unrest. Contexts Ψ ::= · | Ψ, N
Asynch. Contexts Ω ::= · | Ω, P

Positive atoms a+ and negative propositions N are both
stable on the left since we can perform no more inversion
on them there. We group them together and denote them
as N̄ . They are precisely the propositions allowed in linear
contexts. Conversely negative atoms a− and positive propo-
sitions P , are stable on the right, as conclusions, and are de-
noted P̄ . Unrestricted contexts Ψ are subject to weakening,

contraction, and exchange, linear contexts ∆ to exchange,
and asynchronous contexts Ω to no structural properties.

The judgments of focused linear logic are:

Stable Ψ;∆ ` P̄
Right Focus Ψ;∆ ` [P ]
Left Focus Ψ;∆; [N ] ` P̄
Right Inversion Ψ;∆;Ω ` N
Left Inversion Ψ;∆;Ω ` P̄

These are the five phases of focusing. In stable sequents,
we must choose a proposition to focus on. During the focus
phases, we must continue to decompose the focused propo-
sition, indicated in [brackets]. In the inversion phases, we
must eagerly decompose invertible connectives. The rules
defining focused linear logic proofs are Figure 2.

3.2 Embedding Linear Logic in FF

To a first approximation, the embedding will work by
requiring negative (resp. positive) object language propo-
sitions to be associated with a world (resp. frame) to be
translated. (We will need to generalize the translation of
positives, but this view suffices for now.) That is, we will
define a pair of mutually recursive functions (N@p) and
(P@f), both of which yield a negative FF proposition A.
This intentionally resembles our previous use of the expres-
sions a−@f or a+@p as positive FF atoms, so that we can
define (N̄@p) and (P̄@f) by merely abuse of notation.

Before giving the full translation, we wish to further il-
lustrate the way the embedding works with a few small ex-
amples. First of all, we describe how certain linear logic
judgments are translated. We temporarily ignore unre-
stricted contexts Ψ for brevity.

A typical stable (that is, having no inversion steps imme-
diately available) focused linear logic sequent such as

N1, . . . , Nn ` P (1)

will be translated to the FF sequent

(N1@α1), . . . , (Nn@αn), (P@φ) `FF φ /(α1 ∗ (· · · ∗ αn))
(2)

for α1, . . . αn distinct fresh world variables, and φ a fresh
frame variable. The job before us is to choose how to define
the embedding functions so that provability (and proofs) of
(2) coincide with that of (1).

An intuition for what is going on in the sequent (2) is that
all of the individual pieces of the linear sequent (1) are avail-
able in the context of (2), but available as (and this is un-
avoidable, since FF is not a substructural logic) unrestricted,
ordinary hypotheses. However each hypothesis will be ef-
fectively ‘tagged’ with a unique label by the embedding @.
The FF atom φ /(α1 ∗ (· · · ∗ αn)) that is the conclusion of
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Ψ, N ; Ψ; ∆[N ] ` P̄
copy

Ψ, N ; Ψ; ∆ ` P̄

Ψ; ∆[N ] ` P̄
foc

Ψ; ∆, N ` P̄

Ψ; ∆ ` P̄
blur

Ψ; ∆; · ` P̄

a+R
Ψ; ∆, a+ ` [a+]

Ψ; ∆, a+; Ω ` N
a+L

Ψ; ∆; Ω, a+ ` N

a−L
Ψ; ∆; [a−] ` a−

Ψ; ∆; · ` N
↓R

Ψ; ∆ ` [↓N ]

Ψ; ∆, N ; Ω ` P̄
↓L

Ψ; ∆; Ω, ↓N ` P̄

Ψ; ∆; Ω ` P
↑R

Ψ; ∆; Ω ` ↑P

Ψ; ∆; P ′ ` P̄
↑L

Ψ; ∆; [↑P ′] ` P̄

>R
Ψ; ∆; Ω ` >

Ψ; ∆; Ω, P ` N
(R

Ψ; ∆; Ω ` P ( N

Ψ; ∆1 ` [P ] Ψ; ∆2; [N ] ` P̄
(L

Ψ; ∆1, ∆2; [P ( N ] ` P̄

Ψ; ∆; Ω ` N1 Ψ; ∆; Ω ` N2
&R

Ψ; ∆; Ω ` N1 & N2

Ψ; ∆; [N i] ` P̄
&Li

Ψ; ∆; [N1 & N2] ` P̄

Ψ; ∆ ` [P i]
⊕Ri

Ψ; ∆ ` [P 1 ⊕ P 2]

Ψ; ∆; Ω, P 1 ` N Ψ; ∆; Ω, P 2 ` N
⊕L

Ψ; ∆; Ω, P 1 ⊕ P 2 ` N

0L
Ψ; ∆; Ω, 0 ` N

Ψ; ∆1 ` [P 1] Ψ; ∆2 ` [P 2]
⊗R

Ψ; ∆1, Ψ; ∆2 ` [P 1⊗P 2]

Ψ; ∆; Ω, P 1, P 2 ` N
⊗L

Ψ; ∆; Ω, P 1⊗P 2 ` N

Ψ; ·; · ` N
!R

Ψ; · ` [!N ]

Ψ, N ; ∆; Ω ` P̄
!L

Ψ; ∆; Ω, !N ` P̄

Figure 2. Focused Linear Logic Inference Rules

(2) then serves as the prescription of the linear resource dis-
cipline that each hypothesis N i must be used exactly once,
because each ‘tag’ αi occurs exactly once in the term.

Note that P ends up on the opposite side of the turn-
stile after embedding — this is always be the case for pos-
itive propositions, as positive object-language hypotheses
also are translated to FF conclusions. This is caused by the
need to preserve focusing phases, together with the fact that
FF is almost entirely made of negative propositions. There-
fore positives on the right, (resp. left) where they are syn-
chronous (resp. asynchronous), must be translated to neg-
atives on the left (resp. right) where they are synchronous
(resp. asynchronous).

An entirely negative right-inversion judgment with an
empty asynchronous context

N1, . . . , Nn; · ` N (1a)

will be translated to the FF sequent

(N1@α1), . . . , (Nn@αn) `FF N@(α1 ∗ (· · · ∗ αn)) (2a)

Again, it is a world expression (α1 ∗ (· · · ∗ αn)) that pre-
scribes the linear context in which N must be proved.

With these we can consider the negative linear proposi-
tion ↓N1 ( N2. Its translation (↓N1 ( N2)@p at world
p will turn out to be

∀α.↓(N1@α) → (N2@(p ∗ α)) (∗)

To prove (∗) in FF, we add a new hypothesis (N1@α) to
the context, for a fresh α, and try to prove (N2@(p ∗ α)).
This new goal is still of the form in (2a), and corresponds to
a linear context with one more hypothesis in it.

If we were to focus on (∗) as a hypothesis in FF it would
require us to choose a world expression q to substitute for

α, to prove as a new goal (N1@q), and to continue on prov-
ing our original goal with the new hypothesis (N2@(p∗q)).
Here we fall outside our simplified version of the invariant
maintained by the embedding (for (p ∗ q) is no longer gen-
erally a world variable) but we can at least point out that
the choice of q corresponds to the choice of resources ∆1 to
devote to proving P in the (L rule. By making the world
that N2 is translated at the larger expression p ∗ q, we are
indicating that more resources are required to actually ob-
tain N2: we must spend the p that were already associated
with obtaining ↓N1 ( N2, plus the additional q that were
used to produce N1.

Consider also the (negative, because of ↑) proposition
↑(a+

1 ⊗ a+
2 ). Imagine that it occurs as a hypothesis within

a sequent like (2), say at world α, as ↑(a+
1 ⊗ a+

2 )@α. This
will be translated as

∀φ.↑(∀α1.(a
+
1 @α1) → ∀α2.(a

+
2 @α2) → φ / α1 ∗ α2) → φ / α

(∗∗)
If we focus on this proposition on the left in FF, it makes us
choose a frame f to substitute for φ — and then, when focus
finally reaches the atom f / α (what once was φ / α) it must
match (up to equivalence) the current conclusion of (2),
which represents the current shape of the linear logic se-
quent. If that succeeds, we then proceed by trying to prove
∀α1.(a+

1 @α1) → ∀α2.(a+
2 @α2) → φ / α1∗α2, which adds

two new atoms to the context (each at a fresh world vari-
able) and updates the current sequent-structure expression
to contain them.

Note how critical focusing discipline is in this case to
reasoning about the behavior of FF proofs: if not for inver-
sion and focus we would have had to consider many more
different possible proofs of (∗∗) that paused and interleaved
decomposition of it with other parts of the sequent. Show-
ing that the embedding faithfully reproduced provability of
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linear logic would be much harder, and the claim that it
faithfully reproduced proofs would be false!

3.2.1 Embedding Propositions

We now give the full embedding that gives rise to these par-
ticular translations. To do so, we must speak of world con-
tinuations k, which are defined to be abstractions α.A, that
is, an FF proposition abstracted over a bound world variable
α. We write k(p) for application of k to an argument p. We
define (α.A)(p) to be the substitution {p/α}A.

The embedding is then two mutually recursive func-
tions linear logic propositions to negative propositions of
FF. We translate N with respect to a world p, and write
the translation (N@p), and we translate P with respect
to a continuation k, written (P@k). Inasmuch as prov-
ing (N@p) means something like ‘proving N given re-
sources p’, (P@k) means something like ‘refuting P , and
then proving what k yields given a representation of the
resources that an assumption of P represents’. Because
we have structures f / p, we can canonically construe any
frame to also be a continuation. Specifically, we abuse nota-
tion and identify a frame f with the continuation α.(f / α).

The embedding of propositions is defined in Figure 3.
Note that for a positive object-language atom a+, the ex-
pression (a+@k) is an invocation of the translation func-
tion, while (a+@p) is a positive atom of FF. Conversely,
(a−@p) is a call to translation, but (a−@f) is an atom. We
take advantage of this overloading the definitions below.

3.2.2 Embedding Sequents

We refer to any FF context of the form

Γ = (N̄1@α1), . . . , (N̄n@αn), (P̄ 1@φ1), . . . , (P̄m@φm)

as a regular context. A regular context represents a collec-
tion of object language hypotheses and conclusions, each
uniquely labelled by a distinct world or frame variable, re-
spectively. Again, since FF is itself not substructural, the
representations of object language hypotheses and (even
multiple) conclusions persist in it during bottom-up proof:
it is only the world and frame discipline that prevents re-
sources from being inappropriately reused.

Specifically, a world, frame, or structure can be used
to select from Γ a collection of substructural hypotheses
and/or conclusion, according to the following definition.
Suppose Γ is regular, and that ∆ is the linear logic context
N̄ i1 , . . . , N̄ i`

for distinct i1, . . . , i` ∈ {1, . . . , n}. Then we
write:

1. Γ ∼p ∆ iff p ≡ αi1 ∗ · · · ∗ αi`

2. Γ ∼f (∆ ` P i) iff f ≡ φi ~ (αi1 ∗ · · · ∗ αi`
)

3. Γ ∼f / p (∆ ` P i) iff f / p ≡ φi /(αi1 ∗ · · · ∗ αi`
)

Where one might pronounce Γ ∼p ∆ as ‘Γ according to
p represents ∆’ and so on.

Asynchronous contexts Ω are translated as follows. De-
fine the function ((Ω;N)@p), which yields an FF proposi-
tion A from Ω, N, p, and describes inversion of N on the
right with Ω on the left, at world p. It is defined by

((Ω, P ;N)@p) = (P@α.((Ω;N)@(p ∗ α)))
((·;N)@p) = (N@p)

The function (Ω@f) yields a proposition from Ω, f , and
describes the inversion of Ω on the left, at frame f . It is
defined by

((Ω, P )@f) = (P@α.(Ω@(f ~ α))) (·@f) = f / ε

Unrestricted contexts Ψ are translated uniformly at ε:

(·@ε) = ·
((Ψ, N)@ε) = (Ψ@ε), (N@ε)

3.3 Adequacy

Recall that to show the embedding is correct, we seek
a compositional bijection between proofs before and after
translation. This bijection is obtained as the computational
content of the theorem that proofs can be so translated.
There are five parts to the first theorem, corresponding to
the five phases of focused proof search: stable sequents,
negative focus, positive focus, negative inversion, and posi-
tive inversion.

Theorem 3.1 (Adequacy) Suppose Γ is regular. Let Γ′ =
(Ψ@ε),Γ.

1. Γ′ `FF s− iff there are ∆, P̄ such that
Γ ∼s

−(∆ ` P̄ ) and Ψ;∆ ` P̄ .

2. Γ′; [(N@p)] `FF s− iff there are f,∆, P̄ such that
Γ ∼f (∆ ` P̄ ) and Ψ;∆[N ] ` P̄ and f / p ≡ s−.

3. Γ′; [(P@k)] `FF s− iff there are p, ∆ such that
Γ ∼p ∆ and Ψ;∆ ` [P ] and Γ; [k(p)] `FF s−.

4. Γ′ `FF ((Ω;N)@p) iff there is ∆ such that
Γ ∼p ∆ and Ψ;∆;Ω ` N .

5. Γ′ `FF (Ω@f) iff there are ∆, P̄ such that
Γ ∼f (∆ ` P̄ ) and Ψ;∆;Ω ` P̄ .

Proof Deferred to the appendix.

Theorem 3.2 (Adequacy of Provability) The mutually re-
cursive functions (for instance the one from derivations of
Γ `FF s− and derivations of ∆ ` P̄ such that Γ ∼s
−(∆ ` P̄ ), and so on) given by the constructive proof of

the previous theorem is a bijection.
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P (P@k)

0 >
P 1 ⊕ P 2 (P 1@k) ∧ (P 2@k)

1 k(ε)
P 1⊗P 2 (P 2@α.(P 1@β.k(α ∗ β)))

a+ ∀α.a+@α ⇒ k(α)
↓N ∀α.↓(N@α) ⇒ k(α)
!N ↓(N@ε) ⇒ k(ε)

N (N@p)

> >
N1 & N2 (N1@p) ∧ (N2@p)

P ( N (P@α.(N@(p ∗ α)))

a− ∀φ.a−@φ ⇒ φ / p
↑P ∀φ.↓(P@φ) ⇒ φ / p

Figure 3. Linear Logic Embedding

Proof By structural induction on the proof that the previous
theorem yields a given result.

Corollary 3.3 Focused linear logic satisfies cut admissibil-
ity and identity expansion properties, for example

∆1; Ω ` N ∆2[N ] ` P̄

∆1,∆2; Ω ` P̄

Proof Directly by appeal to cut and identity properties of
FF, for we have just shown that focused linear logic is faith-
fully embedded there. The argument for the cut admissi-
bility property mentioned immediately above amounts to
simply cutting (in FF) the translation of N against itself,
translated in both positions at a world that represents the
combination of ∆1 and Ω.

Theorem 3.4 (Adequacy of Focusing Structure) The fo-
cusing structure of the image of a proof after embedding is
isomorphic to to that of the original: synchronous phases
correspond to synchronous, and asynchronous to asyn-
chronous.

Proof By induction over the structure of the derivation.

3.3.1 Unpolarized Linear Logic

We can also embed ordinary unpolarized linear logic, and
the usual unfocused sequent calculus for it, simply by com-
posing our translation above with the well-known embed-
ding of unpolarized propositions into polarized ones that
inserts shift connectives between every connective. The
polarization function consists of four mutually recursive
pieces, defined in the first two parts of Figure 4. They are
RU,LU, R̂U, L̂U , where U is an unpolarized linear logic
proposition from the grammar

Propositions U ::= U & U | > | U ( U | a− |
U⊗U | 1 | U ⊕ U | 0 | a+ | !U

The functions R and L̂ always yield a positive proposition
result, and L and R̂ always yield a negative.

At a very high level, we can show a theorem such as

Theorem 3.5 The derivations of `FF (R̂U@ε) are in bijec-
tive correspondence with the unfocused linear logic proofs
of ` U .

This can be proved either directly, following the same
technique as Theorem 3.1, or by chaining together that the-
orem with the correctness of the polarization function.

This theorem may seem to be a very special case of what
is actually desired, since it only addresses linear sequents
with an empty context, but one can easily use implication to
build up nontrivial propositions U and see that the theorem
suffers no loss of generality.

To show that the unfocused and focused proof systems
are equivalent — that is, to show the completeness of fo-
cusing for linear logic — we observe that the only differ-
ence between a proposition and the unfocused version of it
(that is, the result of erasing all shifts in it and repolarizing
by the above functions) is merely the creation of some extra
double-shifts, and use the following lemma:

Lemma 3.6 (↑↓N@p) a` (N@p) and (↓↑P@k) a`
(P@k).

This follows by a straightforward induction on N and P ,
constructing derivations in FF. We claim this is a novel ac-
complishment of our approach that we are able to derive not
only cut elimination theorems but also focusing complete-
ness proofs ‘for free’ from an algebraic characterization of
substructural contexts.

4 Embedding Ordered Logic

In this section we show how to embed a different sub-
structural logic: ordered logic. The study of noncommuta-
tive logics goes back much earlier than the history of lin-
ear logic, to Lambek [Lam58]. We are also interested in
including the modalities ! and ¡, which allow unrestricted
and mobile (i.e. satisfying the structural law of exchange)
hypotheses to be used alongside ordered hypotheses, as de-
scried by Polakow [Pol01]. Although focused proof search
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R̂U =


a− if U is a−

↑RU otherwise.

L̂U =


a+ if U is a+

↓LU otherwise.

U RU LU

U1⊗U2 ↓R̂U1⊗↓R̂U2 ↑(L̂U1⊗ L̂U2)

U1 ⊕ U2 ↓R̂U1 ⊕ ↓R̂U2 ↑(L̂U1 ⊕ L̂U2)
1 1 ↑1
0 0 ↑0

U1 & U2 ↓(R̂U1 & R̂U2) ↑L̂U1 & ↑L̂U2

> ↓> >
U1 ( U2 ↓(L̂U1 ( R̂U2) ↓R̂U1 ( ↑L̂U2

a− ↓a− a−

a+ a+ ↑a+

!U !R̂U ↑!↑L̂U

U RU LU

U1 � U2 ↓(L̂U1 � R̂U2) ↓R̂U1 � ↑L̂U2

U1 →→ U2 ↓(L̂U1 →→ R̂U2) ↓R̂U1 →→ ↑L̂U2

U1 • U2 ↓R̂U1 • ↓R̂U2 ↑(L̂U1 • L̂U2)

¡U ¡R̂U ↑¡↑L̂U

Figure 4. Polarization

for ordered logic is not as well-known as for linear logic,
it is implicit in, taken together, the ordered logic program-
ming systems of Pfenning and Simmons [PS09] and Po-
lakow [Pol00].

Without its exponentials, the encoding of ordered logic
would be almost entirely the same that of linear logic, ex-
cept that we would drop the axiom that makes ∗ commuta-
tive. We wish to illustrate, however, how to simultaneously
accommodate the variety of different substructural hypothe-
ses present in full ordered logic.

The propositions of ordered logic are

Propositions U ::= U & U | > | U � U | U →→ U | a− |
U • U | 1 | U ⊕ U | 0 | a+ | ¡U | !U

with the noncommutative • replacing linear logic’s⊗, and
two distinct implications, � and →→, which add hypotheses
to the left and right end of the context respectively. We can
mostly rehearse the polarization translation for linear logic,
adding the clauses in the last part of Figure 4, to embed
the unpolarized propositions into the syntax of polarized or-
dered logic propositions, defined as follows.

Negatives N ::= ↑P | N & N | > | P � N | P →→ N | a−

Positives P ::= ↓N | P • P | 1 | P ⊕ P | 0 | a+ | !N | ¡N

Here we did have to make certain choices about which
propositions to try to make negative or positive. Although
these choices were not automatic, they were extremely nat-
ural to make by analogy with focusing intuitions in linear
logic: we already expect multiplicative conjunctions to be
positive, and implications to be negative, with positive ar-
guments.

The FF embedding of polarized ordered logic works as
follows. We have four sorts,

Sorts σ ::= world | linworld | frame | struct

Where we now have two separate notions of (ordered)
worlds and mobile linear worlds, to accommodate the in-
clusion of ¡, which allows mixture of ordered and mobile
hypotheses. We add function symbols sufficient to make

the syntax of these sorts effectively the following:

Linear Worlds p̃ ::= α̃ | ε̃ | p̃ ∗ p̃
Worlds p ::= α | ε | p · p | ιp̃
Frames f ::= φ | f � p | p� f

Here ι is an inclusion from linear worlds into ordered
worlds. We axiomatize ≡ by

ε · p ≡ p p · (q · r) ≡ (p · q) · r

(f � p) / q ≡ f / (q · p) (p� f) / q ≡ f / (p · q)

ε̃ ∗ p̃ ≡ p̃ p̃ ∗ q̃ ≡ q̃ ∗ p̃ p̃ ∗ (q̃ ∗ r̃) ≡ (p̃ ∗ q̃) ∗ r̃

ιε̃ ≡ ε ι(p̃ ∗ q̃) ≡ ιp̃ · ιq̃

which makes ∗ commutative, · generally noncommutative,
(but commutative on the range of ι) and which makes ι an
algebra homomorphism. What we have done is axiomatized
a noncommutative monoid with a commutative submonoid:
the latter describes exactly the mobile hypotheses. The lan-
guage of frames has expanded, as noted above, because the
presence of ordered hypotheses means that a context with a
hole can be built up by adjoining hypotheses to the left or
right of that hole.

The translation of propositions for ordered logic is in
Figure 5. In the absence of a definitive focusing calculus
for ordered logic, the main result is similar to Theorem 3.5.

Theorem 4.1 The derivations of `FF (R̂U@ε) are in bi-
jective correspondence with the unfocused ordered logic
proofs of ` U .

The same comment as for Theorem 3.5 about the gener-
ality of the result applies here.

Furthermore, since we staging the embedding in two
parts — polarization followed by the embedding of polar-
ized ordered propositions — we can observe that the latter
amounts to specifying a focusing proof system for ordered
logic. We could in fact quite straightforwardly work back-
wards from the FF proofs that are possible on embedded
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P (P@k)

0 >
P 1 ⊕ P 2 (P 1@k) ∧ (P 2@k)

1 k(ε)
P 1 • P 2 (P 1@α.(P 2@β.k(α · β)))

a+ ∀α.a+@α ⇒ k(α)
↓N ∀α.↓(N@α) ⇒ k(α)
¡N ∀α̃.(N@ια̃) ⇒ k(ια̃)
!N (N@ε) ⇒ k(ε)

N (N@p)

> >
N1 & N2 (N1@p) ∧ (N2@p)

P � N (P@α.(N@(α · p)))
P →→ N (P@α.(N@(p · α)))

a− ∀φ.a−@φ ⇒ φ / p
↑P ∀φ.↓(P@φ) ⇒ φ / p

Figure 5. Ordered Logic Embedding

propositions in order to invent a collection of first-class in-
ference rules that mimics it exactly, generalizing the calcu-
lus in [Pol01]; only space limitations prevent us from doing
this here. The important thing is that an exact analogue of
Lemma 3.6 still holds, meaning that the focused version of
ordered logic, regardless of how it is implemented, is com-
plete with respect to unfocused proof.

5 Related Work

Our present approach generalizes prior work [Ree07]
that can be seen as achieving roughly the same goals for
just the negative fragment of linear logic. The key insight
that allowed us to embed the entire logic was the consid-
eration of frames as well as worlds — only the latter were
considered in [Ree07].

There has been a significant amount of work on the
Kripke semantics for substructural logics, including the
modalities—see Kamide [Kam02] for a systematic study
and further references. Similarly, the logic of bunched im-
plication was conceived from the beginning with a resource
semantics [OP99]. The classical nature of the metalanguage
in which these interpretations are formulated becomes par-
ticularly apparent when the objective of the translation is
theorem proving: proof search then proceeds in a classical
logic where formulas have been augmented in a systematic
way to encompass worlds, be it for linear [MO99], non-
commutative [GN03], or bunched [GMP05] logic. At the
root of these concrete interpretations we can find labeled
deduction [BDG+00]. Our work shares with these the idea
of resource combination via algebraic operators and partial
orders for resource entailment.

The above models capture a notion of truth with respect
to resources or worlds. In many applications, however, we
are interested in the precise structure of proofs. Besides
well-known computational interpretations of proofs, their
fine structure also determines the behavior of logic pro-
grams where computation proceeds by proof search. Cap-
turing proofs is usually the domain of logical frameworks

such as LF [HHP93], or its substructural extensions such as
RLF [IP98], LLF [CP02], or OLF [Pol01], where proofs are
reified as objects. In case of these frameworks, however,
natural representations (namely those mapping the sub-
structural consequence of the object logic to consequence
in the metalogic) are limited by the substructural properties
of the framework. Moreover, even if (small-step) proofs
can be represented in this manner, focused proofs in an ob-
ject language seem to require even more substructural ex-
pressiveness in the metalanguage. Instead of escalating the
number of substructural judgments and modalities in the
metalanguage, we propose here to slice through the knot
using just an intuitionistic framework and capture substruc-
tural properties algebraically. The framework here is first-
order, but we conjecture, based on our experience with in
HLF [Ree07], that reifying proofs in a dependent version of
the present proposal should not present much difficulty.

6 Conclusion

We have presented a method of embedding substructural
logics into a first-order focused constructive logic which
preserves proofs and focusing structure. It isolates the al-
gebra of contexts from the machinery of propositional in-
ference, and so allows further comparison between other-
wise superficially different logics — although intuitively it
is quite clear that linear logic’s⊗ and ordered logic’s • in-
ternalize an operation on contexts, we can give this intuition
formal content by saying precisely that they share the same
translation up to a different choice of algebra. In future
work, we hope to extend this semantics to classical vari-
ants of substructural logics, as well as modal logics such as
judgmental S4 [PD01], by analogy between � and !. It also
seems like it might be possible to unify linear with bunched
logic along the same lines as ordered and linear logic, by
using a modality to mediate between the two respective al-
gebraic structures.
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A Appendix

A.1 Proof of Identity Expansion

We strengthen the induction hypothesis to:
For all Γ, A,
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1. If there is a derivation

Γ; [A] ` s−

...
Γ ` s−

parametric in s−, then Γ ` A.

2. Γ, B ` [B]

The proof of it is by induction on A, with case 1 consid-
ered less than case 2 for equal A.

1. Split cases on A. We show some representative cases.

Case: s−. Use reflexivity of ≡.

s− ≡ s−

Γ; [s−] ` s−

Case: A1 & A2. Apply the i.h. to

Γ; [Ai] ` s−

Γ; [A1 & A2] ` s−

...
Γ ` s−

to get Γ ` Ai, and then observe

Γ ` A1 Γ ` A2

Γ ` A1 & A2

Case: B ⇒ A. Apply the i.h. at A to

i.h.
Γ, B ` [B] Γ, B; [A] ` s−

Γ, B; [B ⇒ A] ` s−

...
Γ, B ` s−

(having used the i.h. part 2 at B to see that B entails
itself) to obtain Γ, B ` A, and then prove

Γ, B ` A

Γ ` B ⇒ A

2. If B we are done. Otherwise, B = ↓A. In that case,
blur on the right, and apply i.h. part 1 to the inference
rule ↓ L.

A.2 Proof of Adequacy

danger, danger, obsolete notation By lexicographic in-
duction on the object-language proposition (or in parts 4,5,
context), and the derivation. Some representative cases:

1. In the forward direction, the only move available is fo-
cusing on some proposition in Γ. Since by assump-
tion Γ is regular, it is either of the form (N̄@α) or
(P̄@φ). But we cannot begin focus on a positive atom
on the left, so the only possibilities left are (N@α) or
(P@φ). For these apply the induction hypothesis part
2 or 3, respectively.

In the reverse direction, we likewise appeal to induc-
tion hypothesis 2 or 3 depending on whether a negative
or positive atom is focused on.

2.

Case: P ( N in the forward direction. By assump-
tion Γ; [(P ( N@p)] `FF s− which means
Γ; [(P@α.(N@(p ∗ α)))] `FF s−. By induction hy-
pothesis part 3, there are q, ∆1 such that Γ ∼q ∆1 and
∆1 ` [P ] and Γ; [(N@(p ∗ q))] `FF s−. By the in-
duction hypothesis part 2, there are f,∆2, P̄ such that
Γ ∼f (∆2 ` P̄ ) and ∆2 ` [N ] > P̄ and f /(p ∗ q) ≡
s−. To satisfy our obligations we produce the frame
f ~ q, the combined context (∆1,∆2) and conclusion
P̄ , the fact that Γ ∼f~q (∆1,∆2 ` P̄ ) by definition
of ∼, the fact that ∆1,∆2 ` [P ( N ] > P̄ by rule
application, and that (f ~ q) / p ≡ f /(p ∗ q) ≡ s−.

Case: ↑P in the forward direction. We have

Γ; [∀φ.↓(P@α.(φ / α)) ⇒ φ / p] `FF s−

By inversion, a proof of this chooses f to instantiate φ,
and contains subderivations of

Γ ` (P@α.(f / α))

Γ; [f / p] ` s−

The second of these will only succeed of f / p ≡ s−.
We have satisfied part of our obligations by producing
the frame f , and this equivalence. For the rest, we
appeal to the induction hypothesis part 5, observing
that (P@α.(f / α)) and (P@f) (the latter being the
translation of asynchronous context that just happens
to have one element) are the same proposition up to ≡.

4.

Case: Ω, (P 1 ⊗ P 2). We have Γ `FF ((Ω, (P 1 ⊗
P 2);N)@p), whose conclusion by definition is

= ((P 1⊗P 2)@α.((Ω;N)@(p ∗ α)))
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= (P 2@α2.(P 1@α1.((Ω;N)@(p ∗ (α1 ∗ α2)))))

≡ (P 2@α2.(P 1@α1.((Ω;N)@((p ∗ α2) ∗ α1)))))

= (P 2@α2.((Ω, P 1;N)@(p ∗ α2)))

= ((Ω, P 1, P 2;N)@p)

so we may appeal to the induction hypothesis to find
∆ such that Γ ∼p ∆ and ∆ ` Ω, P 1, P 2 > N , and
use rule application to get ∆ ` Ω, (P 1⊗P 2) > N .

Case: Ω = · and N = ↑P . We know Γ `
∀φ.↓(P@α.(φ / α)) ⇒ φ / p. By inversion

Γ, ↓(P@α.(φ / α)) ` φ / p

So we are able to appeal to the induction hypothesis
part 1.

A.3 Polarizing Linear Logic

polar???
These have the property that

Lemma A.1 Focused linear logic proofs of
LU1, LU2, · · ·LUn ` RU are in bijective correspon-
dence with unfocused proofs of U1, U2, · · ·Un ` U

Proof By induction on the respective derivations.

Since we have used a translation that translates propo-
sitions differently depending on whether they essentially
appear on the left or right, cut elimination and identity no
longer come entirely for free. Nonetheless they are not dif-
ficult to show; they follow from the following results con-
cerning shift connectives.

Lemma A.2 (↑↓↑P@p) a` (↑P@p) and (↓↑↓N@k) a`
(↓N@k).

Lemma A.3 (↑RU@p) a` (LU@p) and (RU@k) a`
(↓LU@k).

The first of these two results is not unlike Brouwer’s the-
orem ¬¬¬A a` ¬A. The second follows from applying it
inductively at every connective, and shows that the transla-
tions L and R only differ up to the insertion of shift connec-
tives. As a consequence we recover identity expansion and
cut admissibility hold for the object language. For example,

Lemma A.4 U ` U

Proof This sequent polarizes to LU ` RU , which un-
der translation corresponds to (LU@α), (RU@φ) ` φ / α.
But this is provable iff (LU@α) ` ∀φ.(RU@φ) ⇒
φ / α = (↑RU@α) is by inversion, which we know from

Lemma A.3.

The cut admissibility proof works similarly: the import
of Lemma A.3 is that, while shifts were inserted in slightly
different places to exactly match unfocused proof search,
they have no effect on provability.
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