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Abstract. We propose a constructive approach to the resource seman-
tics of substructural logics via proof-preserving translations into a frag-
ment of focused first-order intuitionistic logic with a preorder. Using
these translations, we can obtain uniform proofs of cut admissibility,
identity expansion, and the completeness of focusing for a variety of log-
ics. We illustrate our approach on linear, ordered, and bunched logics.
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1 Introduction

Substructural logics derive their expressive power from subverting our usual
intuitions about hypotheses. While assumptions in everyday reasoning are things
can reasonably be used many times, used zero times, and used in any order,
hypotheses in linear logic [Gir87] must be used exactly once, in affine logic at
most once, in relevance logic at least once, in ordered logics [Lam58,Pol01] in
a specified order, and in bunched logic [OP99] they must obey a discipline of
occurrence and disjointness more complicated still.

The common device these logics employ to enforce restrictions on use of
hypotheses is a structured context. The collection of active hypotheses is in linear
logic a multiset, in ordered logic a list, and in bunched logic a tree. Similar to, for
instance, display logic [Bel82] we aim to show how to unify diverse substructural
logics by isolating and reasoning about the algebraic properties of their context’s
structure. Unlike these other approaches, we so do without introducing a new
logic that itself has a sophisticated notion of structured context, but instead by
making use of the existing concept of focused proofs [And92] in a more familiar
nonsubstructural logic. We in fact give a translation of various substructural
logics into in a rather simple fragment of focused first-order intuitionistic logic,
equipped with a binary relation and algebraic operations on its first-order domain
particular to the substructural logic being translated.

Such a translation constitutes a novel constructive resource semantics for sub-
structural logics. A resource semantics generally gives the meaning of a propo-
sition as a statement in a (typically classical) ambient logic of mathematical
definitions concerning resource labels (sometimes called ‘worlds’ because of their



role similar to that of Kripke worlds in the semantics of modal logics) that be-
long to a label algebra that reflects the structure of substructural context. Our
approach is similar, except that our representation language is a focused, con-
structive proof system, so we are able to formulate and prove much stronger
claims about the semantics. Not only does provability correspond to provability
back and forth across translation, but proofs correspond bijectively to proofs,
and focusing phases to focusing phases.

Our present approach generalizes prior work [Ree07] that can be seen as
achieving this program for just the negative (in the sense of Girard) fragment
of linear logic, where only negative connectives such as implication and additive
conjunction are allowed. The key insight to the design of a system that handles
all logical connectives, both negative and positive, is that one needs not only a
notion of worlds to label resource-like hypotheses, but also a dual notion of what
we call frames to label conclusions.

For clarity we hereafter refer to the substructural logic being encoded as
the object language and the language it is encoded into as the representation
language. In the following sections, we first describe the representation language,
and give as a central example how to encode focused (intuitionistic, as is the
case for all object languages considered here) linear logic into it. Subsequently
we more briefly discuss how unfocused linear logic, ordered logic, and bunched
logic can also be encoded.

2 The logic FF

Our representation language is a logic called FF, for Focused First-order intu-
itionistic logic.

The notion of focusing, introduced by Andreoli [And92], is a way of narrowing
eligible proofs down to those that decompose connectives in maximal contiguous
runs of logical connectives of the same polarity (a trait of propositional connec-
tives which divides those that can be eagerly decomposed as goals from those
that can be eagerly decomposed as assumptions, among other properties) while
remaining complete compared to ordinary proofs: there is a focused proof of a
proposition iff there is an ordinary proof, but there are generally fewer distinct
focused proofs. It is by using the tight control over proof search and proof iden-
tity that focusing permits that we are able to faithfully mimic not only of which
propositions are provable the object language, but how they are proved.

The representation language is parametrized over the exact structure of its
first-order domain. The data pertaining to the object language we must specify
are:

1. A collection of function symbols that give the syntax of two syntactic sorts
of worlds p and frames f . These syntactic sorts include at minimum world
variables α and frame variables φ respectively, which arise from universal
quantifiers.

2. A specification of a reflexive, transitive relation v on pairs f / p pairs of a
world and a frame. These pairs are called structures.
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The basic intuition is that world variables are abstract labels for substruc-
tural hypotheses, and frame variables are labels for conclusions. The algebraic
manipulation of expressions built out of these labels abstractly recreates the
behavior of substructural contexts. A world expression p describes a context
of potentially many hypotheses, a frame expression describes a sequent with a
propositional hole in its context, and a structure f / p describes the shape of
an entire sequent of the object language. For example, in linear logic, the ex-
pression φ /(α1 ∗ · · · ∗ αn) will represent a sequent with a conclusion labelled φ
and n assumptions each labelled αi for i ∈ {1, . . . , n}. The preorder v says of
two sequent shapes that one is deductively weaker than or equal to the other,
for example, one might have more hypotheses amenable to weakening than the
other. In fact, for most of this paper we will consider relations v which are
symmetric as well, and will be written ≡. In this case, the relation simply tells
which context structures are equivalent.

2.1 Syntax

The syntax of the representation language is as follows.

Negative Props A ::= B ⇒ A | A ∧ A | > | ∀α.A | ∀φ.A | s−
Positive Props B ::= s+ | ↓A

Negative Atoms s− ::= f / p
Positive Atoms s+ ::= a−@f | a+@p

Worlds p ::= α | · · ·
Frames f ::= φ | · · ·

Contexts Γ ::= · | Γ ,B

The bulk of the propositions are built of negative logical connectives: impli-
cation, conjunction, truth, universal quantification, and negative atomic propo-
sitions s−. The first argument to implication is as usual a positive proposition.
Ordinarily these might include existential quantification and disjunction, but for
our purposes we only need positive atomic propositions s+, and an inclusion of
negative propositions back into positives, via the shift operator ↓ that interrupts
focus phases.

Negative atomic propositions s− consist of the notion of structures described
above, a pair of a frame and a world, and positive atoms are one of two kinds
of pairs, where one element is an object-language negative or positive atomic
proposition, written respectively a− or a+, and the other element is a frame or
world.

As stated above, the syntax of worlds and frames is specified per object
language — the representation language works uniformly regardless of what it
is. It is here left open except to note again that we must at least include in
expressions the ability to use variables.

Contexts Γ are built out of positive propositions, and are themselves not at
all substructural: they are subject to tacit weakening, contraction, and exchange.
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The judgments of the system are:

Right Focus Γ ` [B]
Left Focus Γ ; [A] ` s−

Right Inversion Γ ` A
Structure Relation s− v s−0

The focus judgments are used when we have selected a proposition and have
committed to continue decomposing it until we reach a polarity shift. Inversion
takes place here when we are trying to prove a negative proposition, and we
apply right rules eagerly, because all right rules for negative propositions are
characteristically invertible.

For uniformity, we write Γ ` J to stand for either Γ ; [A] ` s− or Γ ` A.
and on occasion when we need to contrast the judgment of FF with that of the
object language, decorate the turnstile as `FF.

2.2 Proofs

The valid deductions of this judgment are defined inductively by the inference
rules as follows:

s+R
Γ , s+ ` [s+]

s− v s−0
s−L

Γ ; [s−] ` s−0

Γ ` A
↓R

Γ ` [↓A]

Γ , ↓A; [A] ` s−

↓L
Γ , ↓A ` s−

>R
Γ ` >

Γ ` A
∀Rα

Γ ` ∀α.A

Γ ; [{p/α}A] ` s−

∀L
Γ ; [∀α.A] ` s−

Γ , B ` A
⇒R

Γ ` B ⇒ A

Γ ` [B] Γ ; [A] ` s−

⇒L
Γ ; [B ⇒ A] ` s−

Γ ` A
∀Rφ

Γ ` ∀φ.A

Γ ; [{f/φ}A] ` s−

∀L
Γ ; [∀φ.A] ` s−

Γ ` A1 Γ ` A2

∧R
Γ ` A1 ∧ A2

Γ ; [Ai] ` s−

∧Li

Γ ; [A1 ∧ A2] ` s−

They are mostly standard, but we make some comments about the behav-
ior of focusing: when we are focused on a negative atomic proposition s−, the
current conclusion s−0 must be related to s− according to the relation v; when
focused on a positive atom s+, that atom must already be found in the current
context. Encountering ↓A on the right blurs focus, and begins inversion of A.
Decomposing ↓ on the left begins a focus phase, which is only allowed when the
conclusion has ‘stabilized’ to a negative atomic proposition s−.

The right rules for the quantifiers are assumed to have the standard side-
conditions about the freshness of variables they introduce. We write {p/α} and
{f/φ} for substitution of a world or frame expression for the appropriate vari-
able. We may also without any further difficulty support more universal quanti-
fiers defined in the same uniform way over new first-order domains if necessary;
an application of this generality can be found in Section 4.
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2.3 Metatheory

This calculus satisfies the usual pair of properties that establish its internal
soundness (cut admissibility) and internal completeness (identity expansion).
Because of the relation allowed at negative atoms, we must first show a form of
monotonicity with respect to the preorder.

Lemma 1 (Monotonicity). Suppose s− v s−0 .

1. If Γ ` s−, then Γ ` s−0
2. If Γ ; [A] ` s−, then Γ ; [A] ` s−0

Proof. By induction on the derivation. Use transitivity for the case s−L.

The admissibility of cut now follows.

Theorem 1 (Cut Admissibility). The following rules are admissible:

Γ ` [B] Γ ,B ` J

Γ ` J

Γ ` A Γ, ↓A ` J

Γ ` J

Γ ` A Γ ; [A] ` s−

Γ ` s−

Proof. By a standard structural cut admissibility proof, using lexicographic in-
duction on the cut formula A and the derivations involved. In the first rule, if B
is an atom we are done, by the admissibility of contraction. Otherwise analyze
and inductively decompose the second premise. In the third rule, both premises
are decomposed in lockstep.

We can also separately obtain the result that shows every proposition (not just
an atom) entails itself:

Theorem 2 (Identity Expansion). Γ , ↓A ` A and Γ ,B ` [B] for all Γ ,A,B.

Proof. Deferred to the appendix.

3 Encoding Linear Logic

In this section we show how to encode focused linear logic into FF in a proof-
preserving way. This result is equally applicable, then, to ordinary linear logic; we
need only apply the usual polarization of an unpolarized linear logic proposition
in a way that focused proof search on the result reproduces proof search on the
original proposition.

3.1 Focused Linear Logic

In focused linear logic, the propositions are also polarized into negative proposi-
tions, and positive, with polarity shift operators ↑ and ↓ passing between them.
Their syntax is as follows.
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Negatives N ::= ↑P | N & N | > | P ( N | a−
Positives P ::= ↓N | P ⊗P | 1 | P ⊕ P | 0 | a+

Left Stable N̄ ::= N | a+

Right Stable P̄ ::= P | a−
Linear Contexts ∆ ::= · | ∆, N̄

Asynch. Contexts Ω ::= · | Ω,P

Because positive atoms a+ and negative propositions N are both ‘stable’ on
the left since we can perform no more inversion on them there, we group them
together and denote them as N̄ — they are precisely the propositions that remain
in linear contexts. Conversely negative atoms a− and positive propositions P , are
stable on the right, as conclusions. The exponential ! is considered in Section 3.4.

The judgments of focused linear logic are:

Right Focus Γ ` [P ]
Left Focus Γ ; [N ] ` P̄
Right Inversion Γ ;Ω ` N
Left Inversion Γ ;Ω ` P̄

Where inversion utilizes an ordered context Ω decompose positive connectives
in a fixed order. The inference rules defining focused proof search are fairly stan-
dard. If the reader is not familiar with them, they are provided in the appendix
in Section A.4.

3.2 Encoding Focused Linear Logic

To encode focused linear logic into FF, we must first ‘instantiate’ FF by choosing
how worlds and frames are built, and what the relation v on them is. The
eventual goal, the adequacy theorem for the encoding, is to get out of these choices
a compositional bijection between linear logic proofs of a given sequent, and FF
proofs of its translation. This bijection will be obtained as the computational
content of the theorem that proofs can be translated back and forth between the
object and representation languages.

We define the syntax of worlds and frames as follows:

Worlds p ::= α | ε | p ∗ p
Frames f ::= φ | f ~ p

Worlds are built from variables, the empty world (which specifies no re-
sources), and a binary operator ∗ of resource combination. Frames consist of
frame variables, and an operation f ~ p that adjoins a world p to f . This opera-
tion can be seen as the permission, when using a linear logic left rule, to choose a
proposition to decompose from inside the linear context, and to set all the other
propositions (represented by p) aside.

For the relation v we take a notion of equivalence ≡ on these expressions
and structures f / p, determined by associativity, commutativity, and unit laws
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on ∗, and an additional associativity property that captures the meaning of ~.
Specifically, the relation ≡ is axiomatized by

ε ∗ p ≡ p p ∗ q ≡ q ∗ p p ∗ (q ∗ r) ≡ (p ∗ q) ∗ r (f ~ p) / q ≡ f / (q ∗ p)

plus symmetry, reflexivity, and transitivity of ≡, and all congruence laws as
expected; for example, p ∗ q ≡ p′ ∗ q′ when p ≡ p′ and q ≡ q′.

Since in this case the relation ≡ was chosen to be symmetric, we can simplify
proofs by positing that all worlds, frames, and negative atoms s− are identified
up to ≡, and lifting this identification to all propositions. It it easy to see that
sequents that are the same up to ≡ on the atoms within them have isomorphic
proofs.

For the encoding we will speak of continuations k, which are defined to be
abstractions α.A, that is, an FF proposition abstracted over a bound world
variable α. We write k(p) for application of k to an argument p. By definition
(α.A)(p) is the same as {p/α}A.

Encoding Propositions We define a pair of mutually recursive functions as
follows from focused linear logic propositions to negative propositions of FF. We
translate N with respect to a world p, and write the translation (N@p), and we
translate P with respect to a continuation k, written (P@k).

P (P@k)

0 >
P 1 ⊕ P 2 (P 1@k) ∧ (P 2@k)

1 k(ε)
P 1⊗P 2 (P 2@α.(P 1@β.k(α ∗ β)))

a+ ∀α.a+@α ⇒ k(α)
↓N ∀α.↓(N@α) ⇒ k(α)

N (N@p)

> >
N1 & N2 (N1@p) ∧ (N2@p)

P ( N (P@α.(N@(p ∗ α)))

a− ∀φ.a−@φ ⇒ φ / p
↑P ∀φ.↓(P@α.(φ / α)) ⇒ φ / p

This gives a resource semantics for linear logic. The expression (N@p) de-
scribes the truth of N ‘at world p’, or ‘given resources p’. We see sensibly that an
additive conjunction N1 & N2 is true at a world iff both its conjuncts are true at
that world. The interpretation of positive connectives is given dually in terms of
their role as assumptions. A positive proposition passes to its world-continuation
a world describing what resources it stands for. Thus we see that the meaning
of P ( N at world p is the meaning of N at the larger world p ∗ α, under the
supposition that P is true given resources α. Resource combination also takes
place in the interpretation of⊗: the resources passed to the final continuation
for P 1⊗P 2 are those passed by P 1 combined, via ∗, with those given by P 2.

We can also see the dual nature of positives in that the disjunctive connectives
in linear logic are translated as conjunctions in FF, and in that the polarity shift
operators effect a species of negation in both directions.
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Note that for a positive object-language atom a+, the expression (a+@k)
is an invocation of the translation function, while (a+@p) is a representation
language positive atom. Conversely, (a−@p) is a call to translation, but (a−@f)
is an atom. We take advantage of this overloading the definitions below.

Before discussing how to translate sequents with contexts in full generality, we
can already give a suggestive example of the way in which linear logic derivations
resemble their counterparts in FF: for as a special case a proof ` N of a single
negative proposition in the empty context will correspond to a proof `FF (N@ε)
of the translation of N at the empty world. So we can compare for example
a proof of ↓↑1 ⊗ ↓↑1 ( ↑1 and of its translation: (eliding some intermediate
asynchronous steps)

· ` [1]

· ` 1

[↑1] ` 1

↑1 ` 1

↑1; [↑1] ` 1

↑1, ↑1 ` 1

` ↓↑1⊗↓↑1 ( ↑1

φ / ε ≡ φ / ε

[φ / ε] ` φ / ε

Γ ` φ / ε

Γ ` [↓φ / ε]

φ / β ≡ (φ ~ β) / ε

Γ ; [φ / β] ` (φ ~ β) / ε

Γ ; [↓φ / ε ⇒ φ / β] ` (φ ~ β) / ε

Γ ; [(↑1@β)] ` (φ ~ β) / ε

Γ ` (φ ~ β) / ε

Γ ` [↓(φ ~ β) / ε]

(φ ~ β) / α ≡ φ /(α ∗ β)

Γ ; [(φ ~ β) / α] ` φ /(α ∗ β)

Γ ; [↓(φ ~ β) / ε ⇒ (φ ~ β) / α] ` φ /(α ∗ β)

Γ ; [(↑1@α)] ` φ /(α ∗ β)

↓(↑1@α), ↓(↑1@β), ↓φ / ε ` φ /(α ∗ β)

` ∀α.↓(↑1@α) ⇒ ∀β.↓(↑1@β) ⇒ (↑1@(α ∗ β))

where Γ abbreviates ↓(↑1@α), ↓(↑1@β), ↓φ / ε, and frequently only lazily ex-
panding the translation of ↑1 to save space.

The way the FF proof works is that the negative atom in its conclusion
tracks the shape of the linear logic sequent — in particular the shape of its
linear context. All linear logic hypotheses (resp. the conclusion) appear as FF
hypotheses, each translated at a distinct world (resp. a frame) variable. This is
made more explicit in the translation of contexts below.

Observe that there are an equal number of focus phases in both proofs, in
this case three. In linear logic we focus twice on a resource of ↑1, and in FF we
focus twice on its translation, first at world α, then at β, each time choosing
(via the ∀L rule) a frame, first φ~β, then φ, in which that world occurs — that
is, which satisfies the appropriate relation ≡ with the current context structure,
namely the negative atom that is the FF conclusion — and then replace that
world with ε, modeling the deletion of 1 from the context. Finally, the third
focus phase checks that the context is empty in linear logic, and in FF checks
that the current context structure is ≡ to the structure φ / ε.
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Encoding Sequents The translation of a linear logic sequent will involve an
FF context

(N̄1@α1), . . . , (N̄n@αn), (P̄ 1@φ1), . . . , (P̄m@φm)

recalling that N̄ and P̄ allow for opposite-polarity atoms, where (P̄@φ) in
case P̄ is a positive proposition P is defined to be the lifting of φ to a contin-
uation (P@α.(φ / α)). We say a context Γ is regular if it is of this form. Such
a Γ represents a collection of object language hypotheses and conclusions, each
uniquely labelled by a distinct world or frame variable, respectively. Since Γ is
itself not substructural, object language hypotheses and (even multiple) conclu-
sions persist in it during bottom-up proof search: it is only the world and frame
discipline that prevents resources from being inappropriately reused.

Specifically, a world, frame, or structure can be used to select from Γ a
collection of substructural hypotheses and/or conclusion, according to the fol-
lowing definition. Suppose Γ is regular, and that ∆ is the linear logic context
N̄ i1 , . . . , N̄ i`

for distinct i1, . . . , i` ∈ {1, . . . , n}. Then we write:

1. Γ ∼p ∆ iff p ≡ αi1 ∗ · · · ∗ αi`

2. Γ ∼f (∆ ` P i) iff f ≡ φi ~ (αi1 ∗ · · · ∗ αi`
)

3. Γ ∼f / p (∆ ` P i) iff f / p ≡ φi /(αi1 ∗ · · · ∗ αi`
)

We must also account for how asynchronous contexts Ω are translated. Define
the function ((Ω;N)@p), which yields a proposition from Ω,N, p, and describes
inversion of N on the right with Ω on the left, at world p. It is defined by

((Ω,P ;N)@p) = (P@α.((Ω;N)@(p ∗ α))) ((·;N)@p) = (N@p)

The function (Ω@f) yields a proposition from Ω, f , and describes the inversion
of Ω on the left, at frame f . It is defined by

((Ω,P )@f) = (P@α.(Ω@(f ~ α))) (·@f) = f / ε

3.3 Adequacy

Recall that to show the encoding is correct, we seek a compositional bijection
between proofs before and after translation. This bijection is obtained as the
computational content of the theorem that proofs can be so translated. There
are five parts to the translation, corresponding to the five states of focused proof
search: neutral sequents, negative focus, positive focus, negative inversion, and
positive inversion.

Theorem 3 (Adequacy). Suppose Γ is regular.

1. Γ `FF s− iff there are ∆, P̄ such that Γ ∼s− (∆ ` P̄ ) and ∆ ` P̄ .
2. Γ [(N@p)] `FF s− iff there are f,∆, P̄ such that Γ ∼f (∆ ` P̄ ) and ∆[N ] ` P̄

and f / p ≡ s−.
3. Γ [(P@k)] `FF s− iff there are p, ∆ such that Γ ∼p ∆ and ∆ ` [P ] and

Γ [k(p)] `FF s−.
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4. Γ `FF ((Ω;N)@p) iff there is ∆ such that Γ ∼p ∆ and ∆ ` Ω > N .
5. Γ `FF (Ω@f) iff there are ∆, P̄ such that Γ ∼f (∆ ` P̄ ) and ∆ ` Ω > P̄ .

Proof. Deferred to the appendix.

Theorem 4 (Adequacy of Provability). The function from derivations of
Γ `FF s− and derivations of ∆ ` P̄ such that Γ ∼s− (∆ ` P̄ ) given by the
constructive proof of the previous theorem is a bijection.

Proof. By structural induction on the proof that the previous theorem yields a
given result.

Corollary 1. Focused linear logic satisfies cut admissibility and identity expan-
sion.

Proof. By appeal to the same properties of FF, for we have just shown that
focused linear logic is faithfully embedded there.

3.4 Adding the Exponential

An advantage of our approach is that adding the exponential ! to the existing
translation is quite easy. Syntactically, we add to linear logic · · · | !N , and
translate it via saying (!N@k) = (N@ε) ⇒ k(ε).

The intuition is that propositions under bang should be true absolutely, with
respect to no resources, and ε represents exactly this lack of resources. We can
see immediately that the translations of !> and 1 coincide (up to eliminating a
vacuous > ⇒) and so too !N1⊗ !N2 and !(N1 & N2), because of the equivalence
ε ≡ ε∗ ε. The adequacy theorem can be extended straightforwardly to relate this
encoding of the exponential with intuitionistic linear logic with exponential in
judgmental style [Bar97,CCP03].

3.5 Unpolarized Linear Logic

We can also represent ordinary unpolarized linear logic, and the usual unfocused
sequent calculus for it, by composing our translation above with the well-known
embedding of unpolarized propositions into polarized ones that inserts shift op-
erators between every connective. The details of this translation are routine, and
deferred to the appendix.

To show that the unfocused and focused proof systems are equivalent — that
is, to show the completeness of focusing for linear logic — we need only show
that double-shifts, the unnecessary pauses in focus, are eliminable.

Lemma 2. (↑↓N@p) a` (N@p) and (↓↑P@k) a` (P@k).

This follows by a straightforward induction on N and P , constructing deriva-
tions in FF.

This method is even more useful for logics, like the two described below, for
which a focusing system is not as well known, or not known at all. For then we
can show adequacy of the object language with respect to a polarizing translation
that inserts shifts everywhere, and simply read off a complete focusing system for
the object language from what is obtained by removing redundant double-shifts.
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4 Encoding Ordered Logic

The study of noncommutative logics goes back to Lambek [Lam58], but we take
the more modern treatment in Polakow’s thesis [Pol01] as a reference point,
which includes modalities ! and ¡ that allow unrestricted and mobile (i.e. satis-
fying the structural law of exchange) hypotheses to be used alongside ordered
hypotheses. Although focused proof search for ordered logic is not as well-known
as for linear logic, it is implicit in, taken together, the ordered logic programming
systems of Pfenning and Simmons [PS09] and Polakow [Pol00].

Without its exponentials, the encoding of ordered logic would be almost
entirely the same that of linear logic, except that we would drop the axiom that
makes ∗ commutative. We wish to illustrate, however, how to accommodate the
variety of different substructural hypotheses present in full ordered logic.

The syntax of polarized propositions in ordered logic is

Negatives N ::= ↑P | N & N | > | P � N | P →→ N | a−
Positives P ::= ↓N | P • P | 1 | P ⊕ P | 0 | a+ | !N | ¡N

The judgment of ordered logic has three zones of hypotheses, an unrestricted Γ ,
a linear ∆, and an ordered Ω. To encode this structure, we take the syntax of
worlds and frames to be defined by

Linear Worlds p̃ ::= α̃ | ε̃ | p̃ ∗ p̃
Worlds p ::= α | ε | p · p | ιp̃
Frames f ::= φ | f � p | p� f

with an injection ι from linear worlds into ordered worlds, with ≡ axiomatized
by

ε·p ≡ p p·(q·r) ≡ (p·q)·r (f�p) / q ≡ f / (q · p) (p�f) / q ≡ f / (p · q)

ε̃ ∗ p̃ ≡ p̃ p̃ ∗ q̃ ≡ q̃ ∗ p̃ p̃ ∗ (q̃ ∗ r̃) ≡ (p̃ ∗ q̃) ∗ r̃ ιε̃ ≡ ε ι(p̃ ∗ q̃) ≡ ιp̃ · ιq̃

which makes ∗ commutative, · generally noncommutative, (but commutative on
the range of ι) and which makes ι an algebra homomorphism. We have essentially
axiomatized a free noncommutative monoid with a commutative submonoid. The
language of frames has expanded not because of the modalities, but just because
order introduces the possibility that left rules take place to the left or right of
other, uninvolved resources.

The translation of propositions for ordered logic is in Figure 1. and we may
rehearse suitable versions of all of the adequacy results proved above for linear
logic.

A context Γ ;∆;Ω is then modeled by a world expression that translates
N ∈ Γ to (N@ε), and N ∈ ∆ to (N@ια̃) (for a fresh α̃) and N ∈ Ω to (N@α)
(for a fresh α).

The points to take away from this example are that a variety of different
sorts of substructural hypotheses can be modeled by different syntactic sorts of
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P (P@k)

0 >
P 1 ⊕ P 2 (P 1@k) ∧ (P 2@k)

1 k(ε)
P 1 • P 2 (P 1@α.(P 2@β.k(α · β)))

a+ ∀α.a+@α ⇒ k(α)
↓N ∀α.↓(N@α) ⇒ k(α)
¡N ∀α̃.(N@ια̃) ⇒ k(ια̃)
!N (N@ε) ⇒ k(ε)

N (N@p)

> >
N1 & N2 (N1@p) ∧ (N2@p)

P � N (P@α.(N@(α · p)))
P →→ N (P@α.(N@(p · α)))

a− ∀φ.a−@φ ⇒ φ / p
↑P ∀φ.↓(P@α.φ / α) ⇒ φ / p

Fig. 1. Translation of Ordered Logic

algebraic expressions, and that modalities that mediate between them such as ¡
operate by being essentially a shift operator that quantifies over a different type
of variable — even ! can be construed as quantifying over exactly the worlds (of
which there is only one) that are equal to ε.

5 Bunched Logic

The logic of bunched implications [OP99] features two ways of combining con-
texts, one multiplicative, denoted by a comma, and one additive, denoted by a
semicolon, which lead to contexts being tree-shaped, since the two operations,
while both separately associative, do not distribute over one another. There are
structural rules to make these operations behave appropriately, the bunched
versions of weakening, contraction, and a generalized version of exchange

Γ (∆;∆) ` A

Γ (∆) ` A

Γ (∆1) ` A

Γ (∆1;∆2) ` A

∆1 ` A ∆1 ≡ ∆2

∆2 ` A

for Γ being any bunched logic context-with-hole (exactly what our notion of
frames are meant to represent) and where ≡ is equivalence of bunched contexts,
which includes for example associativity and commutativity of ‘,’ and ‘;’.

We can make use of the full generality of allowing FF atoms to be compared
by a non-symmetric relation v to account for the asymmetry of the first two of
these three rules. We say that polarized bunched logic propositions are given by

Negatives N ::= ↑P | N ∧ N | > | P → N | P−∗N | a−
Positives P ::= ↓N | P ∗ P | I | P ∨ P | ⊥ | a+

and then we choose the syntax of worlds and frames to be

Worlds p ::= α | ε∗ | ε∧ | p ∗ p | p ∧ p
Frames f ::= φ | f ~ p | f 7 p
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(where multiplicative operations are marked with ∗ and additives marked with
∧) with v axiomatized by (where p ≡ q means p v q and q v p)

ε∗ ∗ p ≡ p p ∗ (q ∗ r) ≡ (p ∗ q) ∗ r (f ~ p) / q ≡ f / (q ∗ p)

ε∧ ∧ p ≡ p p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r (f 7 p) / q ≡ f / (q ∧ p)

f /(p ∧ p) v f / p f / p v f /(p ∧ q)

These last two axioms are effectively direct rewritings in our syntax of the
contraction and weakening rules. The remaining axioms correspond directly to
the axiomatization of ≡ in the BI literature. The translation on propositions is
then simply

P (P@k)

⊥ >
P 1 ∨ P 2 (P 1@k) ∧ (P 2@k)

1 k(ε∗)
P 1 ∗ P 2 (P 1@α.(P 2@β.k(α ∗ β)))

a+ ∀α.a+@α ⇒ k(α)
↓N ∀α.↓(N@α) ⇒ k(α)

N (N@p)

> >
N1 ∧ N2 (N1@p) ∧ (N2@p)

P → N (P@α.(N@(p ∧ α)))
P −∗ N (P@α.(N@(p ∗ α)))

a− ∀φ.a−@φ ⇒ φ / p
↑P ∀φ.↓(P@α.φ / α) ⇒ φ / p

and we go through a similar series of adequacy theorems as before. The main
difference in this case is that between every focusing phase (and if we target
unfocused BI by polarizing propositions by inserting shifts everywhere, this ef-
fectively means between every logical connective decomposed) we must match
up via v the current context and the one instantiating a quantifier coming from
a shift operation, and this relationship is now asymmetric and rather nontrivial.
This corresponds exactly to the ability in BI to apply structural rules at any
point in a derivation.

6 Related Work

There has been a significant amount of work on the Kripke semantics for sub-
structural logics, including the modalities—see Kamide [Kam02] for a system-
atic study and further references. Similarly, the logic of bunched implication was
conceived from the beginning with a resource semantics [OP99]. The classical
nature of the metalanguage in which these interpretations are formulated be-
comes particularly apparent when the objective of the translation is theorem
proving: proof search then proceeds in a classical logic where formulas have been
augmented in a systematic way to encompass worlds, be it for linear [MO99],
noncommutative [GN03], or bunched [GMP05] logic. At the root of these con-
crete interpretations we can find labeled deduction [BDG+00]. Our work shares
with these the idea of resource combination via algebraic operators and partial
orders for resource entailment.
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The above models capture a notion of truth with respect to resources or
worlds. In many applications, however, we are interested in the precise struc-
ture of proofs. Besides well-known computational interpretations of proofs, their
fine structure also determines the behavior of logic programs where computation
proceeds by proof search. Capturing proofs is usually the domain of logical frame-
works such as LF [HHP93], or its substructural extensions such as RLF [IP98],
LLF [CP02], or OLF [Pol01], where proofs are reified as objects. In case of
these frameworks, however, natural representations (namely those mapping the
substructural consequence of the object logic to consequence in the metalogic)
are limited by the substructural properties of the framework. Moreover, even
if (small-step) proofs can be represented in this manner, focused proofs in an
object language seem to require even more substructural expressiveness in the
metalanguage. Instead of escalating the number of substructural judgments and
modalities in the metalanguage, we propose here to slice through the knot using
just an intuitionistic framework and capturing substructural properties alge-
braically. The framework here is first-order, but we conjecture, based on our
experience with in HLF [Ree07], that reifying proofs in a dependent version of
the present proposal should not present much difficulty.

7 Conclusion

We have presented a method of interpreting substructural logics into a first-
order focused constructive logic which preserves proofs and focusing structure.
It isolates the algebra of contexts from the machinery of propositional inference,
and so allows further comparison between otherwise superficially different logics
— although intuitively it is quite clear that linear logic’s ⊗, ordered logic’s •,
and bunched logic’s ∗ and ∧ all internalize an operation on contexts, we can
give this intuition formal content by saying precisely that they share the same
translation up to a different choice of algebra. In future work, we hope to extend
this semantics to classical variants of substructural logics, as well as modal logics
such as judgmental S4 [PD01], by analogy with linear !. It also seems like it might
be possible to unify linear with bunched logic along the same lines as ordered
and linear logic, by using a modality to mediate between the two respective
algebraic structures.
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[GMP05] Didier Galmiche, Daniel Méry, and David J. Pym. The semantics of BI
and resource tableaux. Mathematical Structures in Computer Science,
15(6):1033–1088, 2005.

[GN03] Didier Galmiche and Jean-Marc Notin. Connection-based proof construc-
tion in non-commutative logic. In M.Vardi and A.Voronkov, editors, Pro-
ceedings of the 10th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’03), pages 422–436, Almaty,
Kazakhstan, September 2003. Springer LNCS 2850.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

[IP98] Samin Ishtiaq and David Pym. A relevant analysis of natural deduction.
Journal of Logic and Computation, 8(6):809–838, 1998.

[Kam02] Norihiro Kamide. Kripke semantics for modal substructural logics. Journal
of Logic, Language and Information, 11(4):453–470, 2002.

[Lam58] Joachim Lambek. The mathematics of sentence structure. American Math-
ematical Monthly, 65(3):154–170, 1958.

[MO99] Heiko Mantel and Jens Otten. linTAP: A tableau prover for linear logic. In
N.Murray, editor, Proceedings of the International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’99),
pages 217–231, Saratoga Springs, New York, 1999. Springer LNCS 1617.

[OP99] P.W. O’Hearn and D.J. Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, 5(2):215–244, 1999.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11(4):511–540, 2001.

[Pol00] Jeff Polakow. Linear logic programming with an ordered context. In Pro-
ceedings of the 2nd International Conference on Principles and Practice of
Declarative Programming (PPDP’00), pages 68–79. ACM Press, 2000.

[Pol01] Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, Carnegie
Mellon University School of Computer Science, 2001.

[PS09] Frank Pfenning and Robert J. Simmons. Substructural operational seman-
tics as ordered logic programming. In A.Pitts, editor, Proceedings of 24th
Annual Symposium on Logics in Computer Science (LICS’09), Los Angeles,
California, August 2009. IEEE. To appear.

[Ree07] Jason Reed. Hybridizing a logical framework. In P. Blackburn, T. Bolan-
der, T. Braner, V. de Paiva, and J. Villadsen, editors, Proceedings of the
International Workshop on Hybrid Logic (HyLo 2006), 2007.

15



A Appendix

A.1 Proof of Identity Expansion

We strengthen the induction hypothesis to:
For all Γ ,A,

1. If there is a derivation
Γ ; [A] ` s−

...
Γ ` s−

parametric in s−, then Γ ` A.
2. Γ ,B ` [B]

The proof of it is by induction on A, with case 1 considered less than case 2
for equal A.

1. Split cases on A. We show some representative cases.
Case: s−. Use reflexivity of v.

s− v s−

Γ ; [s−] ` s−

Case: A1 & A2. Apply the i.h. to

Γ ; [Ai] ` s−

Γ ; [A1 & A2] ` s−

...
Γ ` s−

to get Γ ` Ai, and then observe

Γ ` A1 Γ ` A2

Γ ` A1 & A2

Case: B ⇒ A. Apply the i.h. at A to

i.h.
Γ ,B ` [B] Γ ,B; [A] ` s−

Γ ,B; [B ⇒ A] ` s−

...
Γ ,B ` s−

(having used the i.h. part 2 at B to see that B entails itself) to obtain
Γ ,B ` A, and then prove

Γ ,B ` A

Γ ` B ⇒ A
2. If B we are done. Otherwise, B = ↓A. In that case, blur on the right, and

apply i.h. part 1 to the inference rule ↓ L.
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A.2 Proof of Adequacy

By lexicographic induction on the object-language proposition (or in parts 4,5,
context), and the derivation. Some representative cases:

1. In the forward direction, the only move available is focusing on some propo-
sition in Γ . Since by assumption Γ is regular, it is either of the form (N̄@α)
or (P̄@φ). But we cannot begin focus on a positive atom on the left, so the
only possibilities left are (N@α) or (P@φ). For these apply the induction
hypothesis part 2 or 3, respectively.
In the reverse direction, we likewise appeal to induction hypothesis 2 or 3
depending on whether a negative or positive atom is focused on.

2.
Case: P ( N in the forward direction. By assumption Γ [(P ( N@p)] `FF s−

which means Γ [(P@α.(N@(p ∗ α)))] `FF s−. By induction hypothesis part
3, there are q, ∆1 such that Γ ∼q ∆1 and ∆1 ` [P ] and Γ [(N@(p ∗ q))] `FF

s−. By the induction hypothesis part 2, there are f,∆2, P̄ such that Γ ∼f

(∆2 ` P̄ ) and ∆2 ` [N ] > P̄ and f /(p∗q) ≡ s−. To satisfy our obligations we
produce the frame f ~ q, the combined context (∆1,∆2) and conclusion P̄ ,
the fact that Γ ∼f~q (∆1,∆2 ` P̄ ) by definition of ∼, the fact that ∆1,∆2 `
[P ( N ] > P̄ by rule application, and that (f ~ q) / p ≡ f /(p ∗ q) ≡ s−.

Case: ↑P in the forward direction. We have

Γ [∀φ.↓(P@α.(φ / α)) ⇒ φ / p] `FF s−

By inversion, a proof of this chooses f to instantiate φ, and contains sub-
derivations of

Γ ` (P@α.(f / α))

Γ ; [f / p] ` s−

The second of these will only succeed of f / p ≡ s−. We have satisfied part of
our obligations by producing the frame f , and this equivalence. For the rest,
we appeal to the induction hypothesis part 5, observing that (P@α.(f / α))
and (P@f) (the latter being the translation of asynchronous context that
just happens to have one element) are the same proposition up to ≡.

4.
Case: Ω, (P 1 ⊗ P 2). We have Γ `FF ((Ω, (P 1 ⊗ P 2);N)@p), whose conclusion by

definition is
= ((P 1⊗P 2)@α.((Ω;N)@(p ∗ α)))

= (P 2@α2.(P 1@α1.((Ω;N)@(p ∗ (α1 ∗ α2)))))

≡ (P 2@α2.(P 1@α1.((Ω;N)@((p ∗ α2) ∗ α1)))))

= (P 2@α2.((Ω,P 1;N)@(p ∗ α2)))

= ((Ω,P 1, P 2;N)@p)

so we may appeal to the induction hypothesis to find ∆ such that Γ ∼p ∆ and
∆ ` Ω,P 1, P 2 > N , and use rule application to get ∆ ` Ω, (P 1⊗P 2) > N .
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Case: Ω = · and N = ↑P . We know Γ ` ∀φ.↓(P@α.(φ / α)) ⇒ φ / p. By inversion

Γ , ↓(P@α.(φ / α)) ` φ / p

So we are able to appeal to the induction hypothesis part 1.

A.3 Polarizing Linear Logic

The polarization function consists of four mutually recursive pieces, defined in
Figure 2. They are RU,LU, R̂U, L̂U , where U is an unpolarized linear logic propo-
sition from the grammar

Propositions U ::= U & U | > | U ( U | a− |
U⊗U | 1 | U ⊕ U | 0 | a+

The functions R and L̂ always yield a positive proposition result, and L and R̂
always yield a negative.

U RU LU

U1⊗U2 ↓R̂U1⊗↓R̂U2 ↑(L̂U1⊗ L̂U2)

U1 ⊕ U2 ↓R̂U1 ⊕ ↓R̂U2 ↑(L̂U1 ⊕ L̂U2)
1 1 ↑1
0 0 ↑0

U1 & U2 ↓(R̂U1 & R̂U2) ↑L̂U1 & ↑L̂U2

> ↓> >
U1 ( U2 ↓(L̂U1 ( R̂U2) ↓R̂U1 ( ↑L̂U2

a− ↓a− a−

a+ a+ ↑a+

R̂U =


a− if U = a−

↑RU otherwise.

L̂U =


a+ if U = a+

↓LU otherwise.

Fig. 2. Linear Logic Polarization

These have the property that

Lemma 3. Focused linear logic proofs of LU1, LU2, · · ·LUn ` RU are in bijec-
tive correspondence with unfocused proofs of U1, U2, · · ·Un ` U

Proof. By induction on the respective derivations.

Since we have used a translation that translates propositions differently de-
pending on whether they essentially appear on the left or right, cut elimination
and identity no longer come entirely for free. Nonetheless they are not difficult
to show; they follow from the following results concerning shift operators.

Lemma 4. (↑↓↑P@p) a` (↑P@p) and (↓↑↓N@k) a` (↓N@k).
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Lemma 5. (↑RU@p) a` (LU@p) and (RU@k) a` (↓LU@k).

The first of these two results is not unlike Brouwer’s theorem ¬¬¬A a` ¬A.
The second follows from applying it inductively at every connective, and shows
that the translations L and R only differ up to the insertion of shift operators.
As a consequence we recover identity expansion and cut admissibility hold for
the object language. For example,

Lemma 6. U ` U

Proof. This sequent polarizes to LU ` RU , which under translation corresponds
to (LU@α), (RU@φ) ` φ / α. But this is provable iff (LU@α) ` ∀φ.(RU@φ) ⇒
φ / α = (↑RU@α) is by inversion, which we know from Lemma 5.

The cut admissibility proof works similarly: the import of Lemma 5 is that,
while shifts were inserted in slightly different places to exactly match unfocused
proof search, they have no effect on provability.

A.4 Focused Linear Logic Proofs

a+R
∆, a+ ` [a+]

∆, a+;Ω ` N
a+L

∆;Ω, a+ ` N

a−L
∆; [a−] ` a−

∆ ` N
↓R

∆ ` [↓N ]

∆,N ;Ω ` N ′

↓L
∆;Ω, ↓N `;N ′

∆ ` P
↑R

∆ ` ↑P
∆,P ;Ω ` P ′

↑L
∆;Ω, ↑P `;P ′

>R
∆ `;>

∆;P `;N
(R

∆ `;P ( N

∆ ` [P ] ∆; [N ] ` P̄
(L

∆; [P ( N ] ` P̄

∆ `;N1 ∆ `;N2
&R

∆ `;N1 & N2

∆; [N i] ` P̄
&Li

∆; [N1 & N2] ` P̄

∆ ` [P i]
⊕Ri

∆ ` [P 1 ⊕ P 2]

∆;Ω,P 1 ` N ∆;Ω,P 2 ` N
⊕L

∆;Ω,P 1 ⊕ P 2 ` N

0L
∆;Ω, 0 ` N

∆1 ` [P 1] ∆2 ` [P 2]
⊗R

∆1,∆2 ` [P 1⊗P 2]

∆;Ω,P 1, P 2 ` N
⊗L

∆;Ω,P 1⊗P 2 ` N

∆;N ` P̄
foc

∆,N ` P̄

∆ ` N
blur

∆; · ` N
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